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Agricultural Productivity and Structural Transformation: 
Evidence from Brazil†

By Paula Bustos, Bruno Caprettini, and Jacopo Ponticelli*

We study the effects of the adoption of new agricultural technologies 
on structural transformation. To guide empirical work, we present a 
simple model where the effect of agricultural productivity on indus-
trial development depends on the factor-bias of technical change. 
We test the predictions of the model by studying the introduction of 
genetically engineered soybean seeds in Brazil, which had heteroge-
neous effects on agricultural productivity across areas with different 
soil and weather characteristics. We find that technical change in soy 
production was strongly labor-saving and led to industrial growth, 
as predicted by the model. (JEL J43, O13, O14, O33, Q15, Q16)

The early development literature documented that the growth path of most 
advanced economies was accompanied by a process of structural transformation. 
As economies develop, the share of agriculture in employment falls and workers 
migrate to cities to find employment in the industrial and service sectors (Clark 
1940; Lewis 1954; Kuznets 1957). These findings suggest that isolating the forces 
that can give rise to structural transformation is key to our understanding of the 
development process. In particular, scholars have argued that increases in agricul-
tural productivity are an essential condition for economic development, based on 
the experience of England during the industrial revolution.1 Classical models of 

1 See, for example, Rosenstein-Rodan (1943); Nurkse (1953); Lewis (1954); Rostow (1960). 
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structural transformation formalize their ideas by showing how productivity growth 
in agriculture can generate demand for manufacturing goods.2 However, several 
scholars noted that the positive effects of agricultural productivity on industrial-
ization occur only in closed economies, while in open economies a comparative 
advantage in agriculture can slow down industrial growth.3 Despite the richness of 
the theoretical literature, there is scarce empirical evidence testing the mechanisms 
proposed by these models.4

In this paper we provide direct empirical evidence on the effects of technical 
change in agriculture on the industrial sector by studying the recent widespread 
adoption of new agricultural technologies in Brazil. First, we analyze the effects of 
the adoption of genetically engineered soybean seeds (GE soy). This new technol-
ogy requires less labor per unit of land to yield the same output. Thus, it can be char-
acterized as labor-augmenting technical change. In addition, we study the effects 
of the introduction of a second harvesting season for maize (milho safrinha). This 
technique permits the growth of two crops per year, effectively increasing the land 
endowment. Thus, it can be characterized as land-augmenting technical change. The 
simultaneous expansion of these two crops allows us to assess the effect of agricul-
tural productivity on structural transformation in open economies.

To guide empirical work, we build a simple model describing a two-sector small 
open economy where technical change in agriculture can be factor-biased. The 
model predicts that a Hicks-neutral increase in agricultural productivity induces a 
reduction in the size of the industrial sector as labor reallocates toward agricul-
ture, as in Matsuyama (1992). Similar results are obtained when technical change is 
land-augmenting. However, if land and labor are strong complements in agricultural 
production, labor-augmenting technical change reduces labor demand in agriculture 
and causes workers to reallocate toward manufacturing. In sum, the model predicts 
that the effect of agricultural productivity on structural transformation in open econ-
omies depends on the factor-bias of technical change.

In a first analysis of the data we find that regions where the area cultivated with 
soy expanded experienced an increase in agricultural output per worker, a reduc-
tion in labor intensity in agriculture, and an expansion in industrial employment. 
These correlations are consistent with the theoretical prediction that the adoption of 
labor-augmenting agricultural technologies reduces labor demand in the agricultural 
sector and induces the reallocation of workers toward the industrial sector. However, 
causality could run in the opposite direction. For example: an increase in productiv-
ity in the industrial sector could raise labor demand and wages, inducing agricultural 
firms to switch to less labor-intensive crops, like soy.

We propose to establish the direction of causality by using two sources of exog-
enous variation in the profitability of technology adoption. First, in the case of GE 
soy, as the technology was commercially released in the United States in 1996, and 

2 See Baumol (1967); Murphy, Shleifer, and Vishny (1989); Kongsamut, Rebelo, and Xie (2001); Gollin, 
Parente, and Rogerson (2002); Ngai and Pissarides (2007). 

3 See Mokyr (1976); Field (1978); Wright (1979); Corden and Neary (1982); Krugman (1987); and Matsuyama 
(1992). 

4 Empirical studies of structural transformation include Foster and Rosenzweig (2004, 2008); Nunn and Qian 
(2011); Michaels, Rauch, and Redding (2012); and Hornbeck and Keskin (2015). We discuss this literature in more 
detail below. 
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legalized in Brazil in 2003, we use this last date as our source of variation across 
time. Second, as the new technology had a differential impact on yields depend-
ing on geographical and weather characteristics, we use differences in soil suit-
ability across regions as our source of cross-sectional variation. Similarly, in the 
case of maize, we exploit the timing of expansion of second-harvest maize and 
cross-regional differences in soil suitability.

In particular, we obtain an exogenous measure of technological change in agri-
culture by using estimates of potential crop yields across geographical areas of 
Brazil from the Food and Agriculture Organization (FAO)’s Global Agro-Ecological 
Zones (GAEZ) database. These yields are calculated by incorporating local soil and 
weather characteristics into a model that predicts the maximum attainable yields 
for each crop in a given area. Potential yields are a source of exogenous variation in 
agricultural productivity because they are a function of weather and soil character-
istics, not of actual yields in Brazil. In addition, the database reports potential yields 
under traditional and new agricultural technologies. Thus, we exploit the predicted 
differential impact of the new technology on yields across geographical areas in 
Brazil as our source of cross-sectional variation in agricultural productivity. Note 
that this empirical strategy relies on the assumption that goods can move across 
geographical areas of Brazil, but labor markets are local due to limited labor mobil-
ity. This research design allows us to investigate whether exogenous shocks to local 
agricultural productivity lead to changes in the size of the local industrial sector. We 
use municipalities as our geographical unit of observation, which are assumed to 
behave as the small open economy described in the model.

We find that municipalities where the new technology is predicted to gener-
ate a larger increase in potential yields of soy were indeed characterized by faster 
adoption of GE soy. In addition, these regions experienced an increase in the value 
of output per worker and a reduction in agricultural labor intensity. Besides, the 
local industrial sector was characterized by faster employment growth and a reduc-
tion in wages. Interestingly, the effects of technology adoption were different for 
maize. Regions where potential maize yields are predicted to increase the most 
when switching from the traditional to the new technology did indeed experience a 
higher increase in the area planted with maize. However, they also experienced an 
increase in agricultural labor intensity, a reduction in industrial employment, and 
faster growth in wages.

The different effects of technological change in agriculture documented for GE 
soy and maize indicate that the factor-bias of technical change is a key determinant 
of the relationship between agricultural productivity and structural transformation 
in open economies. Land-augmenting technical change, the case of second-harvest 
maize, leads to an increase in the marginal product of labor in agriculture and a 
reduction in industrial employment. However, labor-augmenting technical change, 
the case of GE soy, leads to a reduction in the marginal product of labor in agricul-
ture and employment growth of the industrial sector. Thus, in what follows we refer 
to labor-augmenting technical change as labor-saving.5

5 A formal definition of labor-saving technical change is contained in Section II. 
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Our estimates can be used to quantify the effect of local labor-saving agricultural 
technical change on local structural transformation. In particular, we compute the 
elasticity of local sectoral employment shares to changes in agricultural produc-
tivity induced by soy technical change: a 1 percent increase in agricultural labor 
productivity leads to a 0.16 percentage point decrease in the agricultural employ-
ment share and an increase in the manufacturing employment share of a similar 
magnitude. These estimates can be used to understand to what extent the observed 
differences in the speed of structural transformation across Brazilian municipalities 
can be explained by labor-saving technical change in soy. In the year 2000, the 
average municipality had employment shares in agriculture and manufacturing of 
38 and 10 percent, respectively. During the next decade, the degree of labor reallo-
cation across sectors varied extensively across municipalities. Our estimates imply 
that labor-saving technical change in soy can explain 24 percent of the observed 
differences in the reduction of the agricultural employment share across Brazilian 
municipalities and 31 percent of the corresponding differences in the growth of the 
manufacturing employment share.

We assess the robustness of our estimates to a number of deviations from our 
baseline framework. First, estimates are stable when we augment our empirical 
specification to allow municipalities with different initial levels of development to 
be on different structural transformation trends. Second, we obtain similar estimates 
in the subsample of Brazilian municipalities where the agricultural frontier did not 
expand. Third, our estimates are not driven by preexisting trends in manufacturing 
employment nor migration flows. Fourth, our results are robust to using a larger unit 
of observation, microregions. Fifth, at least 60 percent of our estimated effect of 
agricultural technical change on the manufacturing employment share is not driven 
by the processing of soy and maize in downstream industries nor larger agricul-
tural sector demand for manufacturing inputs. Sixth, our estimates are not driven 
by contemporaneous changes in commodity prices. Seventh, our main estimates 
remain statistically significant when we correct standard errors to account for spatial 
correlation.

We complement our findings with an analysis of the service sector. For this pur-
pose, we extend the theoretical model by incorporating nontraded services. A cen-
tral feature of the analysis is the distinction between two effects of labor-saving 
technical change in agriculture: the supply effect and the demand effect.  The supply 
effect is generated by the reduction in the marginal product of labor in the agricul-
tural sector, which reduces agricultural employment. The demand effect is gener-
ated by higher income resulting from agricultural productivity growth, which leads 
to larger consumption and employment in the service sector. As a result, the net 
effect of agricultural technical change on industrialization depends on the relative 
strength of these opposing effects. In addition, the demand effect is driven by the 
increase in land rents, thus its strength depends on the extent to which landowners 
consume services in the region where their land is located. When we turn to the 
data, we find that local labor-saving technical change does not significantly affect 
local employment in the service sector. This finding is consistent with informa-
tion from the Agricultural Census suggesting that the share of land owned by resi-
dent landlords is small. Note, however, that these findings do not necessarily imply 
that agricultural technical change did not have an effect on the demand for services 
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in the aggregate Brazilian economy. This is because the difference-in-differences 
empirical strategy is not suitable to identify aggregate demand effects when land-
owners do not consume services in the regions where their land is located. Thus, a 
further investigation of the effect of agricultural technical change on the aggregate 
demand for services is left for future work.

Finally, we investigate the impact of agricultural technical change on migration 
flows. In our model labor is assumed to be immobile across municipalities, thus all 
the adjustment to labor-saving technological change occurs through a reallocation 
of labor toward the manufacturing sector. However, if workers could relocate to 
other municipalities, some of this adjustment would occur through out-migration. 
Indeed, we find that municipalities with larger increases in potential soy yields expe-
rienced a net outflow of migrants between 2000 and 2010. Our estimates imply that 
the presence of migration flows across municipalities dampens the effects of tech-
nical change on sectoral employment shares, as around one-third of the adjustment 
occurs through migration flows.

Related Literature.—There is a long tradition in economics of studying the links 
between agricultural productivity and industrial development. Nurkse (1953); 
Schultz (1953); and Rostow (1960) argued that agricultural productivity growth was 
an essential precondition for the industrial revolution. Classical models of structural 
transformation formalized their ideas by proposing two main mechanisms through 
which agricultural productivity can speed up industrial growth in closed economies. 
First, the demand channel: agricultural productivity growth raises income per cap-
ita, which generates demand for manufacturing goods if preferences are not homo-
thetic. The higher relative demand for manufactures generates a reallocation of labor 
away from agriculture (Murphy, Shleifer, and Vishny 1989; Kongsamut, Rebelo, 
and Xie 2001; Gollin, Parente, and Rogerson 2002). Second, the supply channel: if 
productivity growth in agriculture is faster than in manufacturing and these goods 
are complements in consumption, then the relative demand for agricultural goods 
does not grow as fast as productivity and labor reallocates toward manufacturing 
(Baumol 1967; Ngai and Pissarides 2007).6

The view that increases in agricultural productivity can generate manufacturing 
growth was challenged by scholars studying industrialization experiences in open 
economies. These scholars argued that high agricultural productivity can retard indus-
trial growth as labor reallocates toward the comparative advantage sector (Mokyr 
1976; Field 1978; and Wright 1979). Their ideas were formalized by Matsuyama 
(1992), who showed that the demand and supply channels are not operative in a 
small open economy that faces a perfectly elastic demand for both goods at world 
prices. The open economy model we present in this paper differs from Matsuyama’s 
in one key dimension. In his model, there is only one input to production, thus tech-
nical change is, by definition, Hicks-neutral. In our model there are two factors, land 
and labor, and the two are complements in agricultural production. Thus, technical 

6 Another mechanism generating a reallocation of labor from agriculture to manufacturing is faster growth in 
the relative supply of one production factor when there are differences in factor intensity across sectors (see Caselli 
and Coleman 2001; Acemoglu and Guerrieri 2008). For a recent survey of the structural transformation literature 
see Herrendorf, Rogerson, and Valentinyi (2013a). 
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change can be factor-biased. In this setting, a new prediction emerges: when tech-
nical change is labor-augmenting, an increase in agricultural productivity leads to a 
reallocation of labor toward the industrial sector even in open economies.7

Our work builds on the empirical literature studying the links between agricul-
tural productivity and economic development.8 The closest precedent to our work 
is Foster and Rosenzweig (2004, 2008), who study the effects of the adoption 
of high-yielding-varieties (HYV) of maize, rice, sorghum, and wheat during the 
Green Revolution in India. To guide empirical work, they present a model in which 
agricultural and manufacturing goods are tradable and technical change is Hicks-
neutral. Consistent with their model, they find that villages with larger improve-
ments in crop yields experienced lower manufacturing growth. Our findings are in 
line with theirs in the case of maize, for which technical change is land-augmenting. 
However, we find the opposite effects in the case of soy, for which technical change 
is labor-saving. Thus, relative to theirs, our work highlights the importance of the 
factor-bias of technical change in shaping the relationship between agricultural pro-
ductivity and industrial development in open economies.

Our treatment of services in the model follows the literature on the Dutch Disease. 
In particular, Corden and Neary (1982) consider a three-sector open economy model 
with nontraded goods. One of the traded sectors is extractive and experiences a 
boom, which leads to deindustrialization and an expansion of the service sector. We 
build on their distinction between two effects of the boom: the spending effect and 
the resource movement effect, which we call the demand and supply effects. Our 
setting differs in that we consider labor-saving technical change which reduces the 
marginal product of labor in the booming sector, agriculture. Thus, in our model 
the net effect of agricultural technical change on industrialization depends on the 
relative strength of these two opposing effects.

Our research also connects to the literature studying the role of manufacturing in 
economic development. This literature has shown that a reallocation of labor into 
manufacturing can increase aggregate productivity. First, when labor productivity is 
lower in agriculture than in the rest of the economy (Gollin, Parente, and Rogerson 
2002; Lagakos and Waugh 2013; and Gollin, Lagakos, and Waugh 2014). Second, 
when the manufacturing sector is characterized by economies of scale generated 
by on-the-job accumulation of human capital such as learning-by-doing (Krugman 
1987; Lucas 1988; and Matsuyama 1992).

Finally, our work is related to recent empirical papers studying the effects of 
agricultural productivity on urbanization (Nunn and Qian 2011); the links between 
structural transformation and urbanization (Michaels, Rauch, and Redding 2012); 
the effects of agriculture on local economic activity (Hornbeck and Keskin 
2015); and the role of out-migration from rural areas in favoring the adoption of 
capital-intensive agricultural technologies (Hornbeck and Naidu 2014).

The remaining of the paper is organized as follows. Section I gives background 
information on agriculture in Brazil. Section II presents the theoretical model. 

7 This prediction rests on the assumptions that land and labor are strong complements in agricultural production, 
and land is only used in the agricultural sector. This last assumption is not necessary to obtain the prediction. Refer 
to the general discussion of the effects of technical change in an open economy with two goods and two factors in 
Findlay and Grubert (1959). 

8 This literature is surveyed by Syrquin (1988) and Foster and Rosenzweig (2008). 
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Section III describes the data. Section IV presents the empirical strategy and results. 
Section V shows a set of robustness checks on our main results. Section VI concludes.

I.  Agriculture in Brazil

In this section we provide background information on recent technological devel-
opments in Brazilian agriculture. In particular, we focus on two new agricultural 
technologies for the cultivation of soy and maize. The first is the use of genetically 
engineered (GE) seeds in soy cultivation. The second is the introduction of a second 
harvesting season for maize during the same agricultural year.

A. Technical Change in Soy: Genetically Engineered Seeds

The main advantage of GE soy seeds relative to traditional ones is that they are 
herbicide-resistant, which facilitates the use of no-tillage planting techniques.9 The 
planting of traditional seeds is preceded by soil preparation in the form of tillage, 
the operation of removing the weeds in the seedbed that would otherwise crowd 
out the crop or compete with it for water and nutrients. In contrast, planting GE soy 
seeds requires no tillage, as the application of herbicide selectively eliminates all 
unwanted weeds without harming the crop. As a result, GE soy seeds can be applied 
directly on last season’s crop residue, allowing farmers to save on production costs 
since less labor is required per unit of land to obtain the same output.10

The first generation of GE soy seeds, the Roundup Ready (RR) variety, was com-
mercially released in the United States in 1996 by the agricultural biotechnology firm 
Monsanto. In 1998, the Comissão Técnica Nacional de Biossegurança (CTNBio) 
authorized Monsanto to field-test GE soy in Brazil for five years as a first step before 
commercialization. Finally, in 2003, the Brazilian government authorized the plant-
ing and commercialization of GE soy seeds.11 Prior to legalization, smuggling of 
GE soy seeds from Argentina was detected since 2001 according to the Foreign 
Agricultural Service of the United States Department of Agriculture (USDA 2001).

The new technology was characterized by fast adoption rates: in 2006 GE seeds 
were planted in 46.4 percent of the area cultivated with soy in Brazil, according to 

9 Genetic engineering (GE) techniques allow a precise alteration of a plant’s traits. This allows targeting a single 
plant’s trait, facilitating the development of plant characteristics with a precision not attainable through traditional 
plant breeding. In the case of herbicide-resistant GE soy seeds, soy genes were altered to include those of a bacteria 
which was herbicide-resistant. 

10 GE soybeans seeds allow farmers to adopt a new set of techniques that lowers labor requirements for several 
reasons. First, since GE soybeans are resistant to herbicides, weed control can be done more flexibly. Herbicides can 
be applied at any time during the season, even after the emergence of the plant. Second, GE soybeans are resistant 
to a specific herbicide (glyphosate), which needs fewer applications: fields cultivated with GE soybeans require an 
average of 1.55 sprayer trips against 2.45 of conventional soybeans (Duffy and Smith 2001; Fernandez-Cornejo, 
Klotz-Ingram, and Jans 2002). Third, no-tillage production techniques require less labor. This is because the appli-
cation of chemicals needs fewer and shorter trips than tillage. In addition, no-tillage allows greater density of the 
crop on the field (Huggins and Reganold 2008). Finally, farmers who adopt GE soybeans report gains in the time 
to harvest (Duffy and Smith 2001). These cost savings might explain why the technology spread fast, even though 
experimental evidence in the United States reports no improvements in yield with respect to conventional soybeans 
(Fernandez-Cornejo and Caswell 2006) .

11 In 2003, the commercialization of GE soy was permitted for one harvesting season, requiring farmers to 
burn all unsold stocks after the harvest (law 10.688). This temporary measure was renewed in 2004. Finally, in 
2005, a new Bio-Safety Law authorized production and commercialization of GE soy in its Roundup Ready variety 
(law 11.105, art. 35). 
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the last agricultural census (IBGE 2006). In the following years the technology con-
tinued spreading to the point that it covered 85 percent of the area planted with soy 
in Brazil by the 2011–2012 harvesting season, according to the Foreign Agricultural 
Service of the USDA (USDA 2012).

The timing of adoption of GE soy seeds coincides with an increase in labor pro-
ductivity and a fast expansion in the area planted with soy in Brazil. Panel A of  
Figure 1 documents that soy labor productivity has been increasing in Brazil since 
the early 1990s, and accelerated sharply in the early 2000s: soy production per 
worker went from 100 tonnes per worker in 2003 to around 300 tonnes per worker 
in 2011. Labor productivity growth was accompanied by an expansion in the area 
planted with soy. Table 1 reports land use by agricultural activity according to the 
1996 and 2006 agricultural censuses. It shows that the area cultivated with seasonal 
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Figure 1. Soy and Maize in Brazil, 1980–2011

Notes: Data sources are CONAB and PNAD. In panels A–D we exclude the states of Rondonia, 
Acre, Amazonas, Roraima, Pará, Amapá, Tocantins, Mato Grosso do Sul, Goias, and Distrito 
Federal due to incomplete coverage by PNAD in the early years of the sample. See online 
Appendix for details.
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crops increased by 10.3 million hectares between 1996 and 2006.12 Out of these, 
8.7 million hectares were converted to soy cultivation. Similarly, panel B of Figure 1 
shows that the area planted with soy has been growing since the 1980s, and experi-
enced a sharp acceleration in the early 2000s.13

The adoption of GE soy can affect labor demand in the agricultural sector through 
two channels: the within-crop and the across-crop effects. The first effect is due to a 
reduction in the amount of agricultural workers per hectare required to cultivate soy: 
labor intensity of soy production fell from 29 workers per 1,000 hectares in 1996 to 
17 workers per 1,000 hectares in 2006 (Table 1). The timing of this change in labor 
intensity is illustrated by panel C, which shows a sharp increase in the area planted 
per worker in soy production in the early 2000s.14 This reduction in labor intensity 
was strong enough to entirely offset the potential increase in labor demand for soy 
due to the expansion in the area planted. As a result, employment in soy production 
experienced a constant decrease during the period under study (panel D).

The second channel through which the adoption of GE soy can affect labor 
demand is the across-crop effect. This effect is due to the expansion of soy culti-
vation over areas previously devoted to other crops. This effect reduces the labor 
intensity of production in the agricultural sector because soy production is one of 

12 Seasonal crops are those produced from plants that need to be replanted after each harvest, such as soy and 
maize. 

13 Yearly data on area planted are sourced from the surveys conducted by CONAB (Companhia Nacional de 
Abastecimento, an agency within the Brazilian Ministry of Agriculture). These surveys of farmers and agronomists 
monitor the annual harvests of major crops in Brazil and are representative at the state level. Because our unit of 
analysis is the municipality, we only use data from the CONAB survey to illustrate the timing of the evolution of 
aggregate agricultural outcomes during the period under study. In the empirical analysis, instead, we use data from 
the agricultural census which covers all farms in the country. 

14 Notice that the decrease in labor intensity in soy production between 1996 and 2006 implied by panel C of 
Figure 1 is larger than the one reported in the text and Table 1. This is because the data sources are different. Panel 
C displays yearly data on area planted with soy from the CONAB survey and yearly data on employment in soy pro-
duction from the PNAD survey. Table 1 instead is based on data on area planted and employment from the agricul-
tural censuses of 1996 and 2006. See the online Appendix for a more detailed discussion of data sources for panel C. 

Table 1—Land Use and Labor Intensity by Agricultural Activity

Land use Labor intensity
(million ha) (workers per 1,000 ha)

Principal activity 1996 2006 1996 2006

Permanent crops 7.5 11.7 127.2 126.7
Seasonal crops 34.3 44.6 110.8 83.7
  Soy 9.2 17.9 28.6 17.1
  Cereals 14.3 15.3 92.5 94.9
  Other seasonal crops 10.8 11.4 169.6 129.8
Cattle ranching 177.7 168.4 25.9 30.6
Forestry 110.7 91.7 34.4 42.6
Not usable 15.2 8.3 NA NA
Other uses 8.3 9.0 NA NA
Total 353.6 333.7 55.6 49.7

Notes: Cereals include rice, wheat, and maize (among others). Other seasonal crops include 
cotton, sugarcane, tobacco, cassava, and beans (among others). Permanent crops include cof-
fee and cocoa (among others). Not usable land includes lakes and areas that are not suitable 
for either crop cultivation or cattle ranching. Data source is the agricultural census. See online 
Appendix for details.



1329BUSTOS ET AL.: AGRICULTURAL PRODUCTIVITYVOL. 106 NO. 6

the least labor-intensive agricultural activities: its production required 17 workers 
per 1,000 hectares while seasonal crops and permanent crops require 84 and 127, 
respectively (Table 1).

B. Technical Change in Maize: Second Harvesting Season

During the last two decades Brazilian agriculture experienced also important 
changes in maize cultivation. Maize used to be cultivated during the spring sea-
son, between August and December. At the beginning of the 1980s a few farm-
ers in the South-East region of Brazil started producing maize after the summer 
harvest, between March and July. This second season of maize cultivation spread 
across Brazil, where it is known as milho safrinha (small-harvest maize). Panel 
E of Figure 1 shows that the area devoted to second season maize has expanded 
steadily since the beginning of the 1990s, although the total area devoted to maize 
has increased only slightly.15

Cultivation of a second season of maize requires the use of modern cultivation 
techniques for the following reasons. First, more intensive land use removes nitrogen 

15 Data on area cultivated with maize broken down by the season of harvest are publicly available only at the 
aggregate level. For this reason in Section IV, when we study municipality-level data, we are not be able to distin-
guish between maize cultivation in different seasons. 

Table 2—Summary Statistics of Main Variables at Municipality Level

1996 1996–2006

Mean SD Mean SD Observations

Panel A. Agricultural census
log output per worker 7.690 1.192 0.561 0.762 4,149
log labor intensity −2.585 1.048 −0.027 0.551 4,149
Soy area share 0.027 0.097 0.013 0.062 3,652
Maize area share 0.049 0.068 0.010 0.093 3,652
GE soy area share 0.000 0.000 0.015 0.075 3,652

2000 2000–2010

Mean SD Mean SD Observations

Panel B. Population census
Employment shares:
  Agriculture 0.383 0.189 −0.064 0.074 4,149
  Manufacturing 0.104 0.090 0.014 0.057 4,149
  Services 0.362 0.136 0.032 0.057 4,149
  Other sectors 0.151 0.054 0.018 0.038 4,149
log employment in manufacturing 5.885 1.580 0.221 0.608 4,149
log wage in manufacturing 5.541 0.500 0.287 0.365 4,149

1991–2000 2000–2010

Mean SD Observations Mean SD Observations

Panel C. Migration
Net migration rate −0.036 0.181 3,992 −0.024 0.124 4,149

Low inputs High inputs Difference

Mean SD Mean SD Mean SD Observations

Panel D. FAO-GAEZ
Potential yield in soy 0.302 0.154 2.113 0.938 1.811 0.851 4,149
Potential yield in maize 0.992 0.494 4.066 2.197 3.073 1.811 4,149

Note: See online Appendix for a detailed description of each variable.
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from the soil, which needs to be replaced by fertilizers. Second, the planting of a 
second crop requires careful timing, as yields drop considerably due to late planting. 
Third, herbicides are used to remove residuals from the first harvest on time to plant 
the second crop. Finally, the second season crop needs to be planted one month 
faster than the first, which usually requires higher mechanization.16

The introduction of a second harvesting season for maize can affect labor demand 
in the agricultural sector through the within-crop and across-crop effects described 
above. The first effect is directly due to the introduction of a second harvest which 
raises labor demand relative to the benchmark of a single maize harvest. The second 
effect is due to the expansion of maize over areas previously dedicated to less-labor 
intensive activities, which also tends to increase labor demand. According to the 
1996 agricultural census, maize cultivation is more labor intensive than the main 
agricultural activities in Brazil. In this year, labor intensity in maize production was 
100 workers per 1,000 hectares, above the labor intensity of soy, other cereals, and 
cattle ranching.17

II.  Model

In this section we present a simple model to illustrate the effects of factor-biased 
technical change on structural transformation in open economies. We consider a 
region that behaves as a small open economy in the sense that goods are freely 
tradable across regions but production factors are immobile. There are two sectors, 
agriculture and manufacturing, and two production factors, land and labor.

A. Setup

This small open economy has ​L​ residents, each endowed with one unit of labor. 
There are two sectors, manufacturing and agriculture, both of which produce trad-
able goods. Production of the manufactured good requires only labor and labor 
productivity in manufacturing is ​​A ​ m​​​. As a result, ​​Q  ​ m​​  = ​ A ​ m​​ ​L   ​ m​​,​ where ​​Q  ​ m​​​ denotes 
production of the manufactured good and ​​L ​ m​​​ denotes labor allocated to the manu-
facturing sector. Production of the agricultural good requires both labor and land, 
and takes the CES form:

(1)	​ ​Q ​ a​​  = ​ A​ N​​​​[γ ​​(​A​ L​​ ​L  ​a​​)​​​ ​ 
σ−1 ____ σ ​ ​ + ​(1 − γ)​ ​​(​A​ T​​ ​T​ a​​)​​​ ​ 

σ−1 ____ σ ​ ​]​​​ 
​  σ ____ σ−1

 ​

​​ ,

where ​​Q ​ a​​​ denotes production of the agricultural good, the two production factors are 
labor (​​L ​ a​​​) and land (​​T​ a​​​)​,​ ​​A​ N​​​ is Hicks-neutral technical change, ​​A​ L​​​ is labor-augmenting 
technical change, and ​​A​ T​​​ is land-augmenting technical change. The parameter ​σ  >  0​ 

16 For a more detailed discussion, see EMBRAPA (2006) and CONAB (2012). 
17 Labor intensity of each agricultural activity is reported in Table 1. Information on the area and number of 

workers employed in farms whose main activity is maize production is publicly available only for the agricultural 
census of 1996. In Table 1 we therefore report labor intensity for the “all cereals” category, which we also observe in 
2006 and includes rice, wheat, maize, and other cereals. For a measure of maize labor intensity under advanced cul-
tivation techniques, we refer to data for the United States. The USDA Agricultural Resources Management Survey 
(ARMS) reports that maize is more labor intensive than soy: labor cost of maize cultivation in 2001 and 2005 were 
on average 1.8 and 1.4 times higher than the labor cost for soy cultivation. 
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captures the elasticity of substitution between land and labor, and ​γ  ∈​ ​ (0, 1)​. The 
production function described by equation (1) implies the following marginal prod-
uct of labor:

(2)	​ MP​L   ​a​​  = ​ A​ N​​ ​A​ L​​ γ​​[γ + ​(1 − γ)​ ​​(​ ​A​ T​​ T _ ​A​ L​​ ​L   ​a​​
 ​)​​​ 

​ σ−1 ____ σ ​
​]​​​ 

​  1 ____ σ−1
 ​

​.​

This expression shows that Hicks-neutral and land-augmenting technical change 
increase the marginal product of labor. However, labor-augmenting technical change 
generates two opposing effects on the marginal product of labor. First, increases 
in ​​A​ L​​​ imply that each worker is more productive, as can be seen in the first term of 
the equation. Second, a larger ​​A​ L​​​ generates a reduction in the amount of land per unit 
of labor in efficiency units ​​(​A​ T​​ T/​A​ L​​ ​L   ​ a​​)​​ , which tends to reduce the marginal product 
of labor. This second effect is larger when land and labor are poor substitutes. Thus, 
the relative strength of the two opposing effects depends on the value of the param-
eter ​σ.​ In particular, ​∂ MP​L   ​ a​​/∂ ​A​ L​​  <  0​ when the elasticity of substitution is smaller 
than the land share of output, ​σ  <  1 − Γ  ≡ ​ T​ a​​ MP​T​ a​​ /​Q   ​ a​​ ,​ as shown in the online 
Appendix. In what follows, we say that technical change is strongly labor-saving 
when this condition is satisfied.18, 19

B. Equilibrium

We consider a small open economy that trades with a world economy where the 
relative price of the agricultural good is ​​P​ a​​ /​P​ m​​  = ​​ (​P​ a​​ /​P​ m​​)​​​ ∗​.​ Profit maximization 
implies that the value of the marginal product of labor must equal the wage in both 
sectors, thus

(3)	​ ​P​ a​​ MP​L   ​ a​​  =  w  = ​ P​ m​​ MP​L   ​m​​​ .

As a result, in equilibrium, the marginal product of labor in agriculture is determined 
by international prices and manufacturing productivity: ​MP​L   ​ a​​  = ​​ (​P​ m​​ /​P​ a​​)​​​ ∗​​A  ​m​​​ . This 
condition and the land market clearing condition ​(​T​ a​​  =  T  )​ determine the equilib-
rium allocation of labor,

(4)	​ ​L  ​ a​ ∗​  = ​  ​A​ T​​ T _ ​A​ L​​
 ​ ​​{​  γ _ 

1 − γ ​ ​ 1 − ​Γ​​ ∗​ _ ​Γ​​ ∗​ ​ }​​​ 
​  σ ____ 
1−σ ​

​, ​

where the equilibrium labor share is ​​Γ​​ ∗​  = ​ γ​​ σ​​​(​P​ m​​ ​A​ m​​ /​P​ a​​ ​A​ N​​ ​A​ L​​)​​​ 1−σ​.​ In turn, the equi-
librium level of employment in manufacturing, ​​L  ​ m​ ∗ ​​ , can be obtained using the labor 
market clearing condition, ​​L  ​m​​ + ​L  ​a​​  =  L.​ Once ​​L  ​ m​ ∗ ​​ and ​​L  ​ a​ ∗​​ are determined, output 

18 Note that, because the production function takes the constant elasticity of substitution (CES) form, the land 
share of output is a function of the equilibrium level of employment in agriculture. In particular, in the relevant case 
where ​σ  <  1​ the land share is increasing on the level of agricultural employment. As a result, this condition is more 
likely to be satisfied when the equilibrium level of agricultural employment is high. 

19 See Neary (1981) and Acemoglu (2010) for more general discussions of the properties of technical change 
that reduce the marginal product of labor. We follow Acemoglu in using the term strongly labor-saving. 
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in each sector can be found using the production functions described in Section IIA. 
See the online Appendix for detailed derivations.

C. Technological Change and Structural Transformation

In this section we assess the response of agricultural and manufacturing employ-
ment to three types of technological change: labor-augmenting, land-augmenting, 
and Hicks-neutral.

Labor-Augmenting Technical Change.—The effect of labor-augmenting technical 
change on agricultural employment depends on whether the elasticity of substitution 
is smaller than the equilibrium land share of agricultural production ​(σ  <  1 − ​Γ​​ ∗​)​. 
When this condition is satisfied, we say that land and labor are strong complements. 
We consider the two possible parameter configurations below.

(i)    Land and labor are strong complements,  ​​ ∂ ​L​ a​ ∗​ _ ∂ ​A​ L​​
 ​  <  0​ and ​​ ∂ ​L​ m​ ∗ ​ _ ∂ ​A​ L​​

 ​  >  0.​

An increase in ​​A​ L​​​ generates a reallocation of labor from agriculture to manufactur-
ing. This is because when the elasticity of substitution between land and labor is 
smaller than the land share of output, labor-augmenting technical change reduces 
the marginal product of labor in agriculture. In equilibrium, the marginal product of 
labor is given by international prices and manufacturing productivity, thus it must 
stay constant when ​​A​ L​​​ increases. Thus, employment in agriculture must fall to keep 
the marginal product of labor at the equilibrium level.20

Proof: 
See online Appendix.

(ii)  Land and labor are not strong complements,  ​​ ∂ ​L​ a​ ∗​ _ ∂ ​A​ L​​
 ​  >  0​ and ​​ ∂ ​L​ m​ ∗ ​ _ ∂ ​A​ L​​

 ​  <  0.​

An increase in ​​A​ L​​​ generates a reallocation of labor from manufacturing to agricul-
ture. This is because when the elasticity of substitution is larger than the land share 
of output, labor-augmenting technical change induces an increase in the marginal 
product of labor in agriculture.

Land-Augmenting Technical Change,  ​​ ∂ ​L​ a​ ∗​ _ ∂ ​A​ T​​
 ​  >  0​ and ​​ ∂ ​L​ m​ ∗ ​ _ ∂ ​A​ T​​

 ​  <  0.​

An increase in ​​A​ T​​​ generates a reallocation of labor from manufacturing to agricul-
ture. To see why this is the case, note that land-augmenting technical change rises 
the marginal product of labor in agriculture (see equation (2)).

Hicks-Neutral Technical Change,  ​​ ∂ ​L​ a​ ∗​ _ ∂ ​A​ N​​ ​  >  0​ and ​​ ∂ ​L​ m​ ∗ ​ _ ∂ ​A​ N​​ ​  <  0.​

20 See Figure A2 in the online Appendix for a graphical representation of these effects. 



1333BUSTOS ET AL.: AGRICULTURAL PRODUCTIVITYVOL. 106 NO. 6

An increase in ​​A​ N​​​ generates a reallocation of labor from manufacturing to agricul-
ture. This is because a Hicks-neutral increase in agricultural productivity rises the 
marginal product of labor in agriculture (see equation (2)).

D. Empirical Predictions

In the following section, we test the predictions of the model by studying the simul-
taneous expansion of two new agricultural technologies: GE soy and second-harvest 
maize. In the case of soy, the advantage of GE seeds relative to traditional ones is 
that they are herbicide-resistant, which reduces the need to plow the land. As a result, 
this new technology requires less labor per unit of land to yield the same output and 
can be characterized as labor-augmenting technical change. In the case of maize, 
farmers started introducing advanced cultivation techniques and inputs which per-
mit to grow two crops a year, effectively increasing the land endowment. Thus, this 
new technology can be characterized as land-augmenting technical change. In our 
empirical analysis, we quantify the effects of these two types of technical change on 
observable variables in the agricultural and manufacturing sector and test whether 
they display the sign patterns predicted by the model.

We analyze data aggregated at the municipality level, which is our unit of analy-
sis. As a result, we interpret the production functions in the model as describing the 
aggregate level of agricultural and manufacturing production ​(​Q   ​ a​​​ and ​​Q   ​ m​​)​ in a given 
municipality. In addition, the agricultural census reports information on employ-
ment aggregated across agricultural activities. Thus, we interpret equation (1) as 
describing the aggregate production function for the agricultural sector, where ​​P​ a​​ ​Q   ​ a​​​ 
is the value of agricultural output, ​​L   ​ a​​​ is agricultural employment, and ​​T​ a​​​ is land in 
agricultural establishments. We trace the effects of the two new agricultural tech-
nologies on these directly observed variables to test the following predictions of the 
model.

Prediction 1: If land and labor are strong complements in production, 
labor-augmenting technical change in agriculture ​(​A​ L​​ ) :​

	 (i)	 increases the value of output per worker, ​​ 
​P​ a​ ∗​​Q​ a​ ∗​ ____ 
​L​ a​ ∗​

  ​;​

	 (ii)	 reduces the labor intensity of production, ​​ 
​L​ a​ ∗​ __ T ​;​

	 (iii)	 reduces the employment share of agriculture, ​​ 
​L​ a​ ∗​ __ L ​;​

	 (iv)	 increases the employment share of manufacturing, ​​ 
​L​ m​ ∗ ​
 __ L ​​ .

Proof: 
See online Appendix.

Prediction 2: Land-augmenting technical change in agriculture ​(​A​ T​​):​

	 (i)	 does not change the value of output per worker;
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	 (ii)	 increases the labor intensity of production;

	 (iii)	 increases the employment share of agriculture;

	 (iv)	 reduces the employment share of manufacturing.

Proof: 
See online Appendix.

E. Services

In this section we extend the model by including a third sector which produces 
nontraded services. The purpose of this extension is to understand to what extent the 
predictions of the model discussed above are modified by the presence of nontraded 
goods. A detailed analysis of the model with services is contained in the online 
Appendix.

We assume that the production function for services uses only labor and dis-
plays constant returns to scale. As a result, ​​Q  ​ s​​  = ​ A​ s​​ ​L   ​ s​​,​ where ​​Q   ​ s​​​ denotes production 
of services and ​​L   ​ s​​​ denotes labor allocated to the service sector. Note that because 
services are nontradable, production can no longer be determined independently 
of consumption and income. Thus, we specify preferences and factor ownership. 
Consumers have the following Cobb-Douglas preferences over the three goods,

(5)	​ U (​c​ a​​, ​c​ m​​, ​c​ s​​)  = ​ c​ a​ ​α​a​​​ ​c​ m​ ​α​m​​​ ​c​ s​ ​α​s​​​, ​

where ​​α​a​​ + ​α​m​​ + ​α​s​​  =  1.​21 There are two types of agents in the economy:  
​L​ workers, each endowed with one unit of labor; and ​T​ landowners, each endowed 
with one unit of land. We assume that workers reside in the same region where they 
work. In contrast, landowners can reside in any region. We denote by ​θ​ the share of 
landowners residing in the same region where their land is located. Then, aggregate 
service consumption in a region is ​​C​ s​​  = ​ c​ s, L​​ L + ​c​ s, T​​​ ​θT,​ where ​​c​ s, L​​​ is the consump-
tion of workers and ​​c​ s, T​​​ the consumption of landowners.22, 23

21 Our use of a homothetic utility function follows the findings in Herrendorf, Rogerson, and Valentinyi (2013b). 
They show that a homothetic utility function where the elasticity of substitution across sectors is smaller than one 
provides the best fit to the postwar US data when sectoral consumption data is measured in terms of value-added. 
Because we use data on employment to measure structural transformation, our analysis tracks value-added better 
than final goods consumption. As a result we use a homothetic utility function. However, we assume that the elas-
ticity of substitution across sectors is equal to 1 to make the model simpler. We discuss below how the predictions 
of our model would be modified if this elasticity was smaller than 1. 

22 Our treatment of landowners nests the two standard assumptions in the regional economics literature as dis-
cussed by Fujita (1989). The first is that land income accrues to absentee landowners and is thus not spent within 
the region, which corresponds to ​θ  =  0.​ The second is that land income is redistributed lump-sum to workers, 
which corresponds to ​θ  =  1,​ because preferences are homothetic. Note that this treatment implicitly assumes that 
absentee landowners reside outside the country. This is because we do not take into account the local consumption 
of landowners who reside in the region under consideration but own land in other regions. In the online Appendix, 
we also consider an alternative scenario where all landowners reside within the country but not necessarily in the 
region where they own land. 

23 Note that ​θ​ is the share of services consumption of landowners that is spent locally. Thus, an alternative 
interpretation is that landowners reside in the region where they own land but buy some services in other regions. 
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In this setting, equilibrium employment in agriculture is the same as in the model 
without nontraded services, given by equation (4). This is because wages are set 
by the value of the marginal product of labor in manufacturing. Thus, the effects of 
agricultural technical change on agricultural employment are identical to the ones 
in the model without services. We call them the supply-side effects of technical 

change:  ​​ 
∂ ​L​ a​ ∗​ ___ ∂ ​A​i​​

 ​​  for ​i  =  N, T, L.​

In turn, equilibrium employment in services can be written as

(6)	​​ L  ​ s​ ∗​  = ​ α​s​​ L + ​α​s​​ θ ​ ​r​​ 
∗​ _ ​w​​ ∗​ ​ T​ ,

where ​​r​​ ∗​​ is the equilibrium land rent.24 Note that workers spend a constant share 
of their labor endowment on services ​(​α​s​​ L)​. This is because the service sector uses 
only labor for production. Thus, any increase in wages has both an income and sub-
stitution effect on the demand for services by workers. The income effect increases 
their demand for services as their labor endowment is more valuable. The substi-
tution effect reduces the demand for services as their price, the wage, increases. 
When preferences are Cobb-Douglas, both effects have the same magnitude and 
cancel out.25 As a result, agricultural technical change can only affect the demand 
for services through its effect on the consumption of landowners: ​​α​s​​ θ ​ ​r​​ 

∗​ _ ​w​​ ∗​ ​​ . In turn, 
agricultural technical change always increases land rents. Thus, the demand for ser-
vices and employment in the service sector increase. We call this the demand side 
effects of technical change: ​​ 

∂ ​L​ s​ ∗​ ___ ∂ ​A​i​​
 ​​  for ​i  =  N, T, L​.

When technical change is Hicks-neutral or land-augmenting, both the supply-side 
and demand-side effects reduce manufacturing employment. However, when tech-
nical change is strongly labor-saving each effect moves manufacturing employment 
in opposite directions. On the one hand, the supply-side effect releases labor from 
agriculture, increasing the labor supply for manufacturing. On the other hand, the 
demand-side effect increases labor demand in services, reducing the supply of labor 
for manufacturing. Therefore, the net effect on manufacturing employment depends 
on the relative strength of each effect. In the online Appendix, we show that the 
supply-side effect dominates as long as ​σ  < ​ (1 − ​Γ​​ ∗​)​​(1 − ​α​s​​ θ)​.​ Note that because ​
1 − ​α​s​​ θ  <  1,​ this condition is stronger than the condition required for agricultural 
technical change to be strongly labor-saving: ​σ  <  1 − ​Γ​​ ∗​.​ Thus, it is satisfied as 
long as landowners’ consumption share of local services ​(​α​s​​ θ)​ is not too large.

III.  Data

The main data sources are the agricultural census, the population census, and 
the FAO Global Agro-Ecological Zones database. To perform robustness checks we 

24 See the online Appendix for detailed derivations and closed-form solutions for ​​r​​ ∗​​ and ​​L​ s​ ∗​.​ 
25 If, instead of Cobb-Douglas, preferences were homothetic with an elasticity of substitution smaller than 1, as 

suggested by Herrendorf, Rogerson, and Valentinyi (2013b), the income effect would dominate. Thus, the demand 
for services from workers would be increasing in wages. 
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also use manufacturing plant-level data from the Brazilian Annual Industrial Survey 
(PIA).26

The agricultural census is released at intervals of ten years by the Instituto 
Brasileiro de Geografia e Estatística (IBGE), the Brazilian National Statistical 
Institute. The empirical analysis focuses on the last two rounds of the census which 
have been carried out in 1996 and in 2006. The agricultural census data are collected 
through direct interviews with the managers of each agricultural establishment and 
are made available online by the IBGE aggregated at municipality level.27 The agri-
cultural variables of interest are the share of land planted with soy and maize, the 
value of production per worker, and labor intensity.28 The last two variables are 
aggregated across all agricultural activities. This is because the unit of observation 
in the census is the agricultural establishment, and these tend to perform several 
activities. As a result, it is not possible to obtain a measure of employment by crop.

We use the Brazilian population census to construct measures of the sectoral 
composition of employment and average wages. The population census is conducted 
every ten years and it covers the entire Brazilian population. We use data from the 
last two rounds of the census (2000 and 2010): this allows us to observe the vari-
ables of interest before and after the legalization of the GE soy seeds.29 Data on the 
sector of employment are collected through a special survey that is administered to 
a representative sample of the Brazilian population within narrow cells defined by 
geographical district, sex, age, and urban or rural residence. The variables we focus 
on are the sector in which the person was working during the previous week and its 
wage.30 For each municipality, we compute employment shares as the number of 
workers in each sector divided by total employment.31 Table 2 contains summary 
statistics for the main variables of interest.

We obtain an exogenous measure of technological change in agriculture by using 
estimates of potential soy and maize yields across geographical areas of Brazil from 
the FAO-GAEZ database. These yields are calculated by incorporating local soil and 
weather characteristics into a model that predicts the maximum attainable yields for 
each crop in a given area. In addition, the database reports potential yields under 
different technologies or input combinations. Yields under the low technology are 
described as those obtained planting traditional seeds, with no use of chemicals nor 
mechanization. Yields under the high technology are obtained using improved high 

26 In this section we briefly discuss the main data sources and variables of interest. For detailed variable defini-
tions, see the online Appendix. 

27 Borders of municipalities often change, thus, to make them comparable over time, IBGE has defined Área 
Mínima Comparável (AMC), smallest comparable areas, which we use as our unit of observation. The average size 
of an AMC in terms of population is 39,858 inhabitants, while the average size of a municipality is 30,833 inhabi-
tants (data from the 2000 population census). In terms of area, the average AMC has an area of around 2,000 square 
kilometers, while the average municipality has an area of 1,500 square kilometers. 

28 The measure of agricultural employment used to construct the value of production per worker and labor 
intensity includes: employees, family members employed in farm activities, sharecroppers, and people who reside 
in the farm and perform agricultural activities without a formal contract. There are two potential problems with this 
definition. The first is potential double counting of seasonal workers who work in more than one farm during the 
same calendar year. The second is that this variable does not include employees hired by service provider companies 
who are contracted by the farm to perform agricultural tasks. See the online Appendix for a detailed description of 
this variable. 

29 To perform some of the robustness checks we also use the 1980 and 1991 population censuses. 
30 The sector classification is comparable across the censuses of 2000 and 2010 and it is the CNAE Domiciliar 

1.0. The broader categories of CNAE Domiciliar 1.0 follow the structure of the ISIC classification version 3.1. 
31 We restrict the sample to workers between 16 and 55 years old. 
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yielding varieties, optimum application of fertilizers and herbicides, and mechaniza-
tion.32 Maps displaying the resulting measures of potential yields for soy and maize 
under each technology are contained in online Appendix Figures A3 to A6.

We construct a measure of technical change in soy or maize production for each 
municipality by deducting the average potential yield under low inputs from the 
average potential yield under high inputs. Figure 2 illustrates the resulting measure 
of technical change in soy at the municipality level, while Figure 3 shows the same 
measure at the microregion level.

Finally, we use data from the Pesquisa Industrial Anual (PIA), the annual indus-
trial survey conducted by the IBGE. We focus on firms operating in the manufac-
turing sector33 and use yearly data from 1996 to 2007. All firms with more than five 
employees registered in the national firm registry (Cadastro Central de Empresas 
(CEMPRE)) are eligible for this survey. The survey is constructed using two strata: 
the first includes a sample of firms having between 5 and 29 employees (estrato 
amostrado) and it is representative at the sector and state level. The second includes 
all firms having 30 or more employees (estrato certo). We construct measures of 

32 See the online Appendix for a detailed definition of potential yields under different input combinations. 
33 Identified by the CNAE sector codes 15 to 37. 

Increase in potential 
soy yield (t/ha) 
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(1.5,1.7]
(1.2,1.5]
(0.9,1.2]
(0.6,0.9]
[−0.3,0.6]
No data

Figure 2. Technological Change in Soy: Municipalities

Notes: Authors’ calculations from FAO-GAEZ data. Technical change in soy production for 
each municipality is computed by deducting the average potential yield under low inputs from 
the average potential yield under high inputs.
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total employment and average wages that are representative at municipality level by 
focusing on firms with 30 or more employees.

IV.  Empirics

In this section we study the effects of the adoption of new agricultural technolo-
gies on structural transformation in Brazil. For this purpose, we first study the effect 
of the adoption of GE soy and second season maize on agricultural productivity and 
the factor intensity of agricultural production. This first step permits to characterize 
the factor-bias of technical change. Next, we assess the impact of technical change 
on the allocation of labor across sectors.

In Section IVA we report simple correlations between the expansion of the area 
planted with soy (maize) and labor market outcomes for the agricultural and indus-
trial sectors in each municipality. As discussed above, these correlations are not 
informative about the causal relation between these variables. Thus, in sections IVB 
to IVD, we present and implement an empirical strategy that attempts to establish 
the direction of causality by exploiting the timing of legalization and the differential 
impact of the new technology on potential yields across geographical areas.
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Figure 3. Technological Change in Soy: Microregions

Notes: Authors’ calculations from FAO-GAEZ data. Technical change in soy production for 
each microregion is computed by deducting the average potential yield under low inputs from 
the average potential yield under high inputs.
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A. Basic Correlations in the Data

We start by documenting how the expansion of soy and maize cultivation during 
the 1996–2006 period relates to changes in agricultural production and industrial 
employment. These basic correlations in the data attempt to answer the following 
question: did areas where soy (maize) expanded experience faster (slower) struc-
tural transformation? First, we present a set of OLS estimates of equations relating 
agricultural outcomes to the percentage of farm land cultivated with soy and maize. 
Second, we present the corresponding estimates for manufacturing outcomes. The 
basic form of the equations to be estimated in this section is

(7)	​ ​y​ jt​​  = ​ δ​j​​ + ​δ​t​​ + ​π​​ soy​ (Soy shar​e)​jt​​ + ​π​​ maize​ (Maize shar​e)​jt​​ + ​ε​jt​​​ ,

where ​j​ indexes municipalities, ​t​ indexes time, ​​δ​j​​​ are municipality fixed effects, ​​δ​t​​​ 
are time fixed effects, ​​y​ jt​​​ is an outcome that varies across municipalities and time, 
and ​Soy (Maize) share​ is the total area reaped with soy (maize) divided by total 
farm land.34 We observe agricultural outcomes for the census years 1996 and 2006. 
Because fixed effects and first difference estimates are identical when considering 
only two periods, we estimate (7) in first differences:

(8)	 ​Δ​y​ j​​  =  Δδ + ​π​​ soy​ ΔSoy shar​e​ j​​ + ​π​​ maize​ ΔMaize shar​e​ j​​ + Δ​ε​j​​​ .

Agricultural Outcomes: Productivity, Labor Intensity, and Employment Share.—
Table 3 reports OLS estimates of equation (8) for three agricultural outcomes. The 
first is labor productivity, measured as the value of output per worker in agriculture. 
The second is labor intensity, measured as the number of workers per unit of land in 
agriculture. The third outcome is the employment share of agriculture.

The first two columns of Table 3 show that in areas where soy cultivation 
expanded, the value of agricultural production per worker increased and labor 
intensity in agriculture decreased. These empirical findings are consistent with the 
characterization of soy technical change as strongly labor-saving. The estimated 
coefficients imply that a 1 percentage point increase in soy area share corresponds 
to a 0.58 percent increase in labor productivity, and a 0.48 percent reduction in labor 
intensity. In contrast, in areas where maize cultivation expanded labor intensity 
increased. This evidence is consistent with our characterization of technical change 
in maize as land-augmenting. The estimated coefficients imply that a 1 percentage 
point increase in maize area share corresponds to a 1.6 percent increase in labor 
productivity, and a 0.74 percent increase in labor intensity.

Next, we analyze the relationship between the expansion in soy and maize area 
and sectoral employment shares. Note that we source information on sectoral 
employment shares from the population census which reports information for 
the years 2000 and 2010. Thus, our estimation of equation (8) relates changes in 
employment shares between 2000 and 2010 to changes in the area planted with soy 
and maize between 1996 and 2006. In both cases the initial year precedes the timing 

34 Total farm land includes areas devoted to crop cultivation (both permanent and seasonal crops), animal breed-
ing, and logging. 
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of legalization of soybean seeds in Brazil (2003), as well as the first date in which 
smuggling of GE soy seeds was documented (2001). Column 3 of Table 3 shows that 
the employment share of agriculture decreased in places where soy expanded while 
estimates for maize are not statistically significant. The estimated coefficient implies 
that a 1 percentage point increase in soy area share corresponds to a 0.09 percentage 
point reduction in the agricultural employment share.

The finding that the agricultural employment share fell in areas where soy 
expanded suggests that soy technical change is not only labor-augmenting but also 
strongly labor-saving. In this case, our model predicts that technology adoption 
reduces labor demand in agriculture.

Manufacturing Outcomes: Employment Share, Total Employment, and Wages.—
We now turn to the question of whether manufacturing employment expanded (con-
tracted) in areas where soy (maize) expanded. Table 4 reports OLS estimates of 
equation (8) for three manufacturing sector outcomes: employment share, level of 
employment, and average wage.

The first column of Table 4 shows that municipalities where soy expanded expe-
rienced a faster increase in the employment share in manufacturing. In contrast, this 
share remained unchanged in municipalities where maize expanded. Interestingly, 
in areas where soy expanded, not only the share but also the level of manufac-
turing employment increased, as shown in column 2. The estimated coefficient on 
the effect of the expansion of soy cultivation in manufacturing employment share 
indicates that municipalities experiencing a 1 percentage point increase in soy area 
share had a 0.11 percentage point increase in manufacturing employment share and 
a 1.05 percent increase in manufacturing employment.

B. Empirical Strategy

In what follows we provide empirical evidence on the causal effects of the adop-
tion of new agricultural technologies on industrial development in Brazil. The basic 
correlations in the data reported in the previous section show that areas where soy 

Table 3—Basic Correlations in the Data: Agriculture  
(Productivity, Labor Intensity, and Employment Share)

​Δ​ log output per ​Δ​ log labor ​Δ​ Employment
worker intensity share

(1) (2) (3)

​Δ​ Soy area share 0.583 −0.479 −0.090
(0.232) (0.154) (0.027)

​Δ​ Maize area share 1.597 0.737 −0.014
(0.184) (0.119) (0.019)

Observations 3,765 3,765 3,765
R2 0.023 0.008 0.003

Notes: Changes in dependent variables are calculated over the years 1996 and 2006 when the 
data sources are the agricultural censuses of 1996 and 2006 (columns 1 and 2), and over the 
years 2000 and 2010 when the data sources are the population censuses of 2000 and 2010 (col-
umn 3). Changes in explanatory variables are calculated over the years 1996 and 2006. The 
unit of observation is the municipality. Robust standard errors reported in parentheses. 
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expanded experienced an increase in output per worker and a reduction in labor 
intensity in agriculture while industrial employment expanded. These findings are 
consistent with the sequence of events predicted by the model, namely that the adop-
tion of strongly labor-saving agricultural technologies reduces labor demand in the 
agricultural sector and induces a reallocation of labor toward the industrial sector. 
However, these correlations are not informative about the direction of causality. For 
example, they are consistent with the following alternative sequence of events: pro-
ductivity growth in the industrial sector increases labor demand and wages, inducing 
agricultural firms to switch to less labor-intensive crops, like soy. In the remainder 
of this section we attempt to establish the direction of causality.

Our empirical strategy relies on the assumption that goods can be traded across 
geographical areas of Brazil but labor markets are local. We investigate whether 
exogenous shocks to local agricultural productivity lead to changes in the size of the 
local industrial sector. Thus, our ideal unit of observation would be a region con-
taining a city and its hinterland with limited migration across regions. We attempt 
to approximate this ideal using municipalities as our main level of geographical 
aggregation. This approach is adequate for municipalities in the interior of the coun-
try, which typically include both rural and urban areas. However, municipalities 
tend to be mostly urban in more densely populated coastal areas. To address this 
concern, we show that our estimates are robust to using a larger unit of observation: 
microregions. Figures 2 and 3 contain maps of Brazil displaying both levels of 
aggregation.35

We propose to identify the causal effect of the new technologies on structural 
transformation by exploiting the timing of adoption and their differential impact on 
potential yields across geographical areas. Let us first consider whether the timing 
of adoption is likely to be exogenous with respect to developments in the Brazilian 
economy. GE soy seeds were commercially released in the United States in 1996, 
and legalized in Brazil in 2003. Given that the seeds were developed in the United 
States, their date of approval for commercialization in the United States, 1996, is 
arguably exogenous with respect to developments in the Brazilian economy. In 

35 Microregions are groups of several municipalities created by the 1988 Brazilian Constitution and used for 
statistical purposes by IBGE. 

Table 4—Basic Correlations in the Data: Manufacturing  
(Employment Share, Employment, and Wages)

​Δ​ Employment ​Δ​ log ​Δ​ log
share employment wage
(1) (2) (3)

​Δ​ Soy area share 0.106 1.053 0.150
(0.022) (0.226) (0.113)

​Δ​ Maize area share 0.001 0.018 −0.039
(0.013) (0.147) (0.080)

Observations 3,765 3,765 3,765
R2 0.007 0.006 0.000

Notes: Changes in dependent variables are calculated over the years 2000 and 2010. Changes 
in explanatory variables are calculated over the years 1996 and 2006. The unit of observation 
is the municipality. Robust standard errors reported in parentheses. 
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contrast, the date of legalization, 2003, responded partly to pressure from Brazilian 
farmers. In addition, smuggling of GE soy seeds across the border with Argentina is 
reported since 2001. Thus, in our empirical analysis we would ideally compare out-
comes before and after 1996. This is possible when variables are sourced from the 
agricultural census. For variables sourced from the population census we compare 
outcomes before and after 2000. Because this year predates both legalization and the 
first reports of smuggling, the timing can still be considered exogenous.

Second, the new technology had a differential impact on potential yields depend-
ing on soil and weather characteristics. Thus, we exploit these exogenous differences 
in potential yields across geographical areas as our source of cross-sectional varia-
tion in the intensity of the treatment. To implement this strategy, we need an exog-
enous measure of potential yields for soy, which we obtain from the FAO-GAEZ 
database. These potential yields are estimated using an agricultural model that pre-
dicts yields for each crop given climate and soil conditions. As potential yields are 
a function of weather and soil characteristics, not of actual yields in Brazil, they 
can be used as a source of exogenous variation in agricultural productivity across 
geographical areas. Crucially for our analysis, the database reports potential yields 
under different technologies or input combinations. Yields under the low technol-
ogy are described as those obtained using traditional seeds and no use of chemicals, 
while yields under the high technology are obtained using improved seeds, optimum 
application of fertilizers and herbicides, and mechanization. Thus, the difference 
in yields between the high and low technology captures the effect of moving from 
traditional agriculture to a technology that uses improved seeds and optimum weed 
control, among other characteristics. We thus expect this increase in yields to be a 
good predictor of the profitability of adopting herbicide-resistant GE soy seeds.

More formally, our basic empirical strategy consists in estimating the following 
equation:

(9)	​ ​y​ jt​​  = ​ δ​j​​ + ​δ​t​​ + ​β​​ soy​ ​A​ jt​ 
soy​ + ​ε​jt​​​ ,

where ​​y​ jt​​​ is an outcome that varies across municipalities ​( j)​ and time ​(t)​. ​​δ​j​​​ are 
municipality fixed effects, ​​δ​t​​​ are time fixed effects, and ​​A​ jt​ 

soy​​ is equal to the potential 
soy yield under high inputs from 2003 onward and to the potential soy yield. This 
variable takes the value corresponding to low inputs before 2003, and the value 
corresponding to high inputs afterwards. ​​A​ jt​ 

soy​​ can be thought of as the empirical 
counterpart of the labor-augmenting technical change ​​A​ L​​​ presented in our model.

In the case of agricultural outcomes, our period of interest spans the ten years 
between the last two censuses which took place in 1996 and 2006. Similarly, in 
the case of sectoral employment shares and manufacturing outcomes, our period of 
analysis spans the ten years between the last two population censuses which took 
place in 2000 and 2010. We thus estimate a first-difference version of equation (9),

(10)	​ Δ​y​ j​​  =  Δδ + ​β​​ soy​ Δ​A​ j​ 
soy​ + ρ Rura​l​ j, 1991​​ + Δ​ε​j​​​ ,

where the outcome of interest, ​Δ​y​ j​​​ , is the change in outcome variables between 
the last two census years, and ​Δ​A​ j​ 

soy​​ is the potential yield of soy under the high 
technology minus the potential yield of soy under the low technology. Figure 2 
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contains a map of Brazilian municipalities displaying this measure of technical 
change. Additionally, we include a control for the share of rural population in 1991 
to allow for differential trends for municipalities with different initial urbanization 
rates. This is important because, as mentioned above, coastal municipalities tend to 
have higher urbanization rates and there were migration flows from rural to urban 
areas during the period under study.36

In the case of maize, we follow a similar empirical strategy. However, it is 
important to note that the cultivation techniques necessary to introduce a second 
harvesting season were developed within Brazil. Thus, the timing of its expansion 
can not be considered exogenous to other developments in the Brazilian econ-
omy. Nevertheless, to the extent that the diffusion of this new technology across 
space depends on exogenous local soil and weather characteristics, the variation 
in adoption used in our empirical analysis is arguably exogenous to developments 
in the local industrial sector. As noted in Section I, the introduction of a second 
harvesting season for maize requires modern techniques that are intensive in the 
use of fertilizers, herbicides, and tractors. Then, we expect that the difference in 
FAO-GAEZ potential maize yields between the high and low technology captures 
the profitability of introducing a second harvesting season. Thus, we augment the 
equation described above to include the following variable: Δ​​A​ j​ 

maize​​, which is equal 
to the potential yield of maize under high inputs minus the potential yield of maize 
under low inputs. Δ​​A​ j​ 

maize​​ can be thought of as the empirical counterpart of the 
land-augmenting technical change ​​A​ T​​​ presented in our model,

(11)	​ Δ​y​ j​​  =  Δδ + ​β​​ soy​ Δ​A​ j​ 
soy​ + ​β​​ maize​ Δ​A​ j​ maize​ + ρRura​l​ j, 1991​​ + Δ​ε​j​​​ .

A potential concern with our identification strategy is that, although the soil and 
weather characteristics that drive the variation in ​Δ​A​ j​ 

soy​​ and ​Δ​A​ j​ maize​​ across geograph-
ical areas are exogenous, they might be correlated with initial levels of development 
across Brazilian municipalities. For example, if municipalities with heterogeneous 
initial levels of development experienced different growth paths, our estimates could 
be capturing differential structural transformation trends across municipalities. To 
assess the extent of this potential concern we first compare observable characteris-
tics of municipalities with high and low levels of our exogenous measure of tech-
nical change in agriculture. Whenever significant differences emerge, we show that 
our estimates are stable when we introduce controls for differential trends across 
municipalities with heterogeneous initial characteristics.

Table 5 compares municipalities above and below the median change in poten-
tial soy yields ​​(Δ​A​ j​ 

soy​ )​​ in terms of observable characteristics in 1991, before the 
introduction of GE soy.37 Municipalities above the median potential increase in 
soy yields are characterized by smaller shares of rural population and agricultural 
employment. In addition, they display a larger manufacturing employment share, 
literacy rate, and income per capita than municipalities below the median. Thus, 
in what follows, we always show that our estimates are stable when we introduce 

36 The share of working age population residing in rural areas fell from 22 percent in 1991 to 14 percent in 2010. 
37 Municipalities below the median level of ​Δ​A​ jt​ 

soy
​​ experience, on average, a 1.06 tons per hectare increase in 

potential soy yield, while those with above the median experience a 2.5 tons per hectare increase. 
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controls for differential trends across municipalities with heterogeneous initial char-
acteristics in our baseline specification (11), as follows:

(12)   ​   Δ​y​ j​​  =  Δδ + ​β​​ soy​ Δ​A​ j​ 
soy​ + ​β​​ maize​ Δ​A​ j​ maize​

	 + ρ Rura​l​ j, 1991​​ + ​X​ j, 1991​ ′  ​ ω + Δ​ε​j​​​ ,

where the vector ​​X​j, 1991​​​ contains the set of municipality characteristics discussed 
above.

In our baseline specifications we report standard errors that are robust to het-
eroskedasticity. A potential concern is that these estimated standard errors may not 
be consistent if our exogenous measures of technical change are correlated across 
space. For this reason, in Section VF, we assess the robustness of our results to a set 
of spatial correlation patterns.

In the following sections we report estimates of the effects of technical change on 
agricultural production and the sectoral composition of employment. In particular, 
we report estimates of the effects of technical change on a set of agricultural out-
comes in IVC; on manufacturing outcomes in IVD; and on service sector outcomes 
in IVE.

C. Agricultural Outcomes

Soy and Maize Expansion.—We start by documenting the relationship between 
technical change measured by the increase in the FAO-GAEZ potential yields of 
soy and maize, and the actual change in the share of agricultural land cultivated with 
each crop. The objective of this exercise is to check whether the change in poten-
tial yields is a good proxy for the profitability of adoption of the new agricultural 
technologies. If this is the case, we expect the increase in potential yield of a given 
crop to predict the actual expansion in the share of agricultural land cultivated with 
that crop between 1996 and 2006.

First, we expect that areas with a higher increase in potential soy yields when 
switching to the high technology are those adopting genetically engineered soy on a 
larger scale. Thus, we start by estimating equation (10) where the outcome of inter-
est, ​Δ​y​ j​​​ , is the change in the share of agricultural land devoted to GE soy between 
1996 and 2006. Note that because this share was zero everywhere in 1996, the change 
in the area share corresponds to its level in 2006. Estimates are shown in column 1 
of Table 6: the increase in potential soy yield predicts the expansion in the share of 
agricultural area planted with GE soy between 1996 and 2006. The point estimate 
remains stable when controlling for initial municipality characteristics, as shown in 
column 2.

In columns 3 and 4 of Table 6 we perform a falsification test by looking at whether 
our measure of technical change in soy explains the expansion in the area planted 
with non-GE soy. In this case, the coefficients are negative and significant. This find-
ing supports our claim that the change in potential soy yield captures the benefits of 
adopting GE soy vis-à-vis traditional soy seeds.

Next, we jointly analyze the effects of technical change in soy and maize on 
the area planted with each crop. For this purpose, we use the broader measure of 
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planted area with soy instead of GE soy.38 This permits to control for municipality 
fixed effects by focusing on changes in area planted rather than levels. We start 
by estimating equation (12) where the outcome of interest, ​Δ​y​ j​​​ , is the change in 
share of agricultural land devoted to either soy or maize between 1996 and 2006. 
Estimates are reported in Table 7. First, note that while soy technical change has a 
positive effect on the area planted with soy (column 1), it does not have a significant 
effect on the area planted with maize (column 4). Similarly, maize technical change 
only has a positive effect on the area planted with maize (columns 2 and 3). These 
findings suggest changes in potential yields when switching to the high technology 
are good measures of crop-specific technical change in soy and maize during this 
period. In addition, both estimates are stable when we add controls for municipality 
characteristics. This finding suggests that the differential expansion of these crops 
across municipalities is not driven by differential trends across municipalities with 
different initial levels of development.

The size of the estimated coefficient on ​Δ​A​ j​ 
soy​​ implies that a 1 standard deviation 

increase in potential soy yield corresponds to an increase in the soy share of agri-
cultural land of 0.26 of a standard deviation. To understand the magnitude of our 
estimate, this is an increase of agricultural land devoted to soy by 877 hectares in 
response to a 0.85 tons per hectare increase in potential soy yield. The correspond-
ing estimate for maize implies that a 1 standard deviation increase in potential 
maize yield corresponds to a 0.08 of a standard deviation increase in the maize 
share of agricultural land. This means that, in response to a 1.8 tons per hectare 

38 In the case of maize, we can only focus on the broader measure of area planted with maize as the publicly 
available agricultural census data do not contain information on the season of planting of maize at the municipality 
level. 

Table 5—Comparing Municipalities Below/Above Median Increase  
in Potential Soy Yield

Below Above
​Δ​A​​ soy​​ median ​Δ​A​​ soy​​ median Difference

(1) (2) (3)
Agricultural employment share 0.500 0.443 −0.057

(0.007)
Manufacturing employment share 0.080 0.097 0.017

(0.003)
Share rural population 0.516 0.404 −0.112

(0.007)
log income per capita 4.389 4.656 0.267

(0.018)
log pop. density 3.155 3.219 0.064

(0.041)
Literacy rate 0.688 0.745 0.057

(0.005)

Observations 2,075 2,074

Notes: Average values of observable characteristics of municipalities that rank below and 
above the median of ​Δ​A​​ soy​​. All observable characteristics are from the population census of 
1991. Column 3 reports the difference between columns 2 and 1, along with its standard error. 
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increase in potential maize yield, agricultural land devoted to maize increases by 
426 hectares.

Agricultural Productivity, Labor Intensity, and Employment Share.—Next, we 
study the effects of agricultural technical change on agricultural production and 
employment. Table 8 reports the results of estimating equation (12) when the 
dependent variables are three agricultural outcomes: the value of agricultural pro-
duction per worker, labor intensity, and the share of workers employed in agriculture.

Estimates reported in columns 1 and 3 indicate that areas where potential soy 
yields increased relatively more experienced a larger increase in the value of agri-
cultural production per worker and a larger reduction in labor intensity between 
1996 and 2006. Next, we study the effect of agricultural technical change in soy 
on the agricultural employment share. Estimates reported in column 5 indicate that 
areas with a larger increase in potential soy yield experienced a faster reduction 
in the agricultural employment share between 2000 and 2010. Note that estimated 
coefficients are stable or slightly larger when we control for lagged municipality 
characteristics in columns 2, 4, and 6. This finding indicates that our estimates are 
not capturing differential growth trends across municipalities. Because technical 
change in soy is characterized as labor-augmenting, these empirical findings are 
consistent with the predictions of the model for the case where land and labor are 
strong complements in agricultural production (see Prediction 1). Thus, the esti-
mates of the effects of soy technical change reported in Table 8 imply that technical 
change in soy was strongly labor-saving and confirm the conclusions drawn from 
the simple correlations in the data reported in Table 3.

The estimates discussed above can be used to compute the elasticity of the agri-
cultural employment share to changes in agricultural labor productivity due to GE 
soy adoption. We compute this elasticity as the ratio of the estimated coefficient 
on ​Δ​A​ j​ 

soy​​ when the outcome is agricultural employment share, and the estimated 

Table 6—The Effect of Technological Change on Agriculture: 
GE Soy Adoption

​Δ​ GE soy area share ​Δ​ Non-GE soy area share

 (1) (2) (3) (4)

​Δ​A​​ soy​​ 0.021 0.019 −0.009 −0.009
(0.002) (0.002) (0.002) (0.002)

Share rural population 0.039 0.085 −0.017 −0.044
(0.005) (0.008) (0.004) (0.007)

log income per capita −0.000 0.001
(0.003) (0.003)

log pop. density 0.003 −0.005
(0.001) (0.001)

Literacy rate 0.114 −0.048
(0.011) (0.010)

Observations 3,652 3,652 3,652 3,652
R2 0.083 0.162 0.019 0.044

Notes: Changes in dependent variables are calculated over the years 1996 and 2006. All munic-
ipality controls are from the population census of 1991. The unit of observation is the munici-
pality. Robust standard errors reported in parentheses. 
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coefficient on ​Δ​A​ j​ 
soy​​ when the outcome is agricultural labor productivity.39 Using 

our more conservative estimates, namely those that include all municipality controls 

39 Due to the different timing of the agricultural and population censuses, agricultural labor productivity 
changes are measured over the period 1996–2006 while employment share changes are measured over the period 

Table 7—The Effect of Technological Change on Agriculture 
(Soy and Maize Expansion)

​Δ​ Soy area share ​Δ​ Maize area share

 (1) (2) (3) (4)

​Δ​A​​ soy​​ 0.013 0.013 0.001
(0.001) (0.002) (0.003)

​Δ​A​​ maize​​ −0.001 0.003 0.003
(0.001) (0.001) (0.001)

Share rural population 0.020 0.039 0.011 0.010
(0.003) (0.005) (0.004) (0.007)

log income per capita 0.001 −0.005
(0.002) (0.004)

log pop. density −0.002 0.004
(0.000) (0.001)

Literacy rate 0.064 −0.006
(0.007) (0.012)

Observations 3,652 3,652 3,652 3,652
R2 0.067 0.124 0.009 0.015

Notes: Changes in dependent variables are calculated over the years 1996 and 2006. All munic-
ipality controls are from the population census of 1991. The unit of observation is the munici-
pality. Robust standard errors reported in parentheses. 

Table 8—The Effect of Technological Change on Agriculture 
(Productivity, Labor Intensity, and Employment Share) 

​Δ​ log output ​Δ​ log labor ​Δ​ Employment
per worker intensity share

(1) (2) (3) (4) (5) (6)

​Δ​A​​ soy​​ 0.115 0.131 −0.057 −0.064 −0.018 −0.021
(0.024) (0.026) (0.018) (0.021) (0.002) (0.002)

​Δ​A​​ maize​​ −0.025 −0.033 0.031 0.033 0.005 0.006
(0.011) (0.011) (0.008) (0.009) (0.001) (0.001)

Share rural population 0.258 0.125 −0.136 −0.177 −0.091 −0.076
(0.057) (0.070) (0.048) (0.051) (0.005) (0.007)

log income per capita −0.010 0.029 0.014
(0.045) (0.039) (0.004)

log pop. density −0.016 −0.017 −0.000
(0.011) (0.011) (0.001)

Literacy rate −0.270 −0.124 −0.012
(0.139) (0.116) (0.014)

Observations 4,149 4,149 4,149 4,149 4,149 4,149
R2 0.009 0.012 0.005 0.007 0.068 0.073

Notes: Changes in dependent variables are calculated over the years 1996 and 2006 when the data sources are the 
agricultural census of 1996 and 2006 (columns 1 to 4), and over the years 2000 and 2010 when the data sources are 
the population census of 2000 and 2010 (columns 5 and 6). All municipality controls are from the population census 
of 1991. The unit of observation is the municipality. Robust standard errors reported in parentheses. 



1348 THE AMERICAN ECONOMIC REVIEW JUNE 2016

in columns 2 and 6, this ratio is equal to ​−0.021/0.134  =  −0.155​.40 The size of 
this elasticity implies that a 1 percent increase in agricultural labor productivity 
corresponds to a 0.155 percentage point decrease in the agricultural employment 
share. To illustrate the magnitude of these estimates, we compute how much of the 
differences in the speed of structural transformation across Brazilian regions be 
explained by technical change in soy, as follows. Consider the average Brazilian 
municipality, which in the year 2000 had employment shares in agriculture and 
manufacturing of 38 and 10 percent, respectively. If this municipality experienced 
an increase in potential soy yields equivalent to a 1 standard deviation from the 
average increase due to soy technical change, agricultural labor productivity would 
rise 11 percent, and the agricultural employment share would fall 1.76 percentage 
points.41 This estimate corresponds to 24 percent of a standard deviation in the 
change of the agricultural employment share between 2000 and 2010 (7.4 percent-
age points, see Table 2).42

In the case of maize, the estimated coefficients reported in columns 3 and 5 indi-
cate that areas with higher increase in potential maize yield experienced a larger 
increase in labor intensity and the agricultural employment share during the period 
under study. These findings are consistent with the predictions of the model for the 
effects of land-augmenting technical change (see Prediction 2). In addition, col-
umn 1 shows that areas where maize yields increased relatively more experienced 
a smaller increase in the value of agricultural output per worker. Our model is too 
stylized to capture this feature in the data, which is likely driven by the across-crop 
effect of technical change: reallocation of labor toward maize production reduces 
the value of output per worker in agriculture. This is because maize production is 
more labor-intensive than soy production, thus the value of the average product of 
labor is lower for maize.43

2000–2010. Thus, the elasticity estimates correspond to the effect of four-year lagged agricultural productivity 
changes on employment shares. 

40 We compute this elasticity in the same way we would compute a Wald estimator in an instrumental variable 

setting, where the estimated coefficient on ​Δ​A​ j​ 
soy

​​ in column 2 is the first-stage coefficient, and the estimated coef-
ficient on ​Δ​A​ j​ 

soy
​​ in column 6 is the reduced-form coefficient. 

41 The first number is computed multiplying 1 standard deviation in ​Δ​A​ j​ 
soy

​​ by the estimated coefficient on ​
Δ​A​ j​ 

soy
​​ in our specification with municipality controls when the outcome is agricultural labor productivity (col-

umn 2 of Table 9): ​0.851 × 0.134  =  0.114.​ The second number is computed multiplying the predicted increase in 
agricultural labor productivity for 1 standard deviation in ​Δ​A​ j​ 

soy
​​ by the elasticity of agricultural employment share 

to agricultural labor productivity: ​0.114 ×  (−0.155)  =  −0.0176​. 
42 The reported estimates are representative for the average Brazilian municipality and not the aggregate 

Brazilian economy, which only had a 17 percent employment share in agriculture in the year 2000. Elasticity 
estimates that are representative for a municipality that has the same sectoral distribution of employment as the 
aggregate economy can be obtained by weighting each observation by the aggregate employment share of each 
municipality. We report such estimates in online Appendix Table A1. These estimates imply that the elasticity of the 
agricultural employment share to agricultural labor productivity is −0.053, around one-third of the estimate for the 
average municipality discussed here. 

43 A more formal explanation of the effect of labor reallocation toward maize on the value of agricultural output 
per worker follows. Suppose that there are only two crops, soy and maize, and two production factors, land and 
labor. In addition, maize production is more labor-intensive than soy. The value of output per worker in agricul-

ture is defined as ​​ PQ
 _ L  ​   ≡   ​ 

​P​mze​​ ​Q​mze​​ + ​P​soy​​ ​Q​soy​​  ______________ L ​   = ​  ​P​mze​​ ​Q​mze​​ ______ ​L​mze​​
 ​  ​ ​L​mze​​ ___ L ​  + ​ 

​P​soy​​ ​Q​soy​​ ______ ​L​soy​​
 ​  ​ 

​L​soy​​ ___ L ​ ​ . In this case, a reallocation of labor 

toward maize production reduces the value of output per worker in agriculture. This is because if soy production 

is more land-intensive than maize production ​​(​ 
​T​soy​​ ___ ​L​soy​​

 ​  > ​  ​T​mze​​ ___ ​L​mze​​
 ​)​​ , the value of the average product of labor is higher 
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To sum up, the results presented in Table 8 suggest that the introduction of new 
agricultural technologies in Brazil had a sizable impact on agricultural labor mar-
kets. Areas where the potential profitability of GE soy adoption was higher experi-
enced an increase in the value of agricultural production per worker, a reduction in 
the number of workers per unit of land, and a reduction in the employment share 
of agriculture. These findings are consistent with the predictions of the model for 
the effects of strongly labor-saving technical change. In the case of maize, areas 
where the potential profitability of the introduction of a second harvesting season 
was higher experienced an increase in labor intensity and in the employment share 
of agriculture. These findings are consistent with the predictions of the model for the 
effects of land-augmenting technical change.

D. Manufacturing Outcomes

In this section we study the effect of agricultural technical change on manufactur-
ing employment and wages. Table 9 reports the results of estimating equation (12) 
where the dependent variables are three manufacturing outcomes: the employment 
share of manufacturing, the level of manufacturing employment, and the average 
wage in manufacturing.

The estimates indicate that areas where potential soy yields increased relatively 
more, experienced a larger increase in the manufacturing employment share between 
2000 and 2010. A comparison of point estimates reported in the first row of columns 
1 and 2 shows that estimates are stable when introducing controls for lagged munic-
ipality characteristics. In addition, columns 3 and 4 report that the absolute level 
of manufacturing employment increased, not only its employment share. Finally, 
columns 5 and 6 show that manufacturing wages fell. These estimates are consis-
tent with the empirical predictions of the model: because technical change in soy is 
strongly labor-saving, it reduces labor demand in agriculture generating a reduction 
in wages and a reallocation of labor toward the manufacturing sector.

The estimates discussed above can be used to compute the elasticity of manu-
facturing employment share to changes in agricultural labor productivity due to GE 
soy adoption. We compute this elasticity as in Section IVC: we divide the estimated 
coefficient on ​Δ​A​ j​ 

soy​​ when the outcome is manufacturing employment share by the 
estimated coefficient on ​Δ​A​ j​ 

soy​​ when the outcome is agricultural labor productivity. 
This ratio is equal to ​0.021/0.134  =  0.157​ in the estimation including controls for 
lagged municipality characteristics. This elasticity implies that a 1 percent increase 
in agricultural labor productivity corresponds to a 0.157 percentage points increase 
in the manufacturing employment share. As in the previous section, we illustrate 
the magnitude of these estimates by computing how much of the differences in 
the speed of structural transformation across Brazilian regions can be explained by 
technical change in soy. Recall that a municipality shocked with a 1 standard devi-
ation increase in potential soy yield experienced an increase in agricultural labor 
productivity of 11 percent, and a corresponding 1.79 percentage points increase in 

for soy ​​(​ 
​P​soy​​ ​Q​soy​​ ______ ​L​soy​​

 ​   > ​  ​P​mze​​ ​Q​mze​​ ______ ​L​mze​​
 ​ )​​. To see why this is the case, note that the zero profit conditions for maize and 

soy ​(​P​i​​ ​Q​i​​  =  r​T​i​​  +  w​L​i​​ for i  =   soy, mze)​ imply ​​ 
​P​i​​ ​Q​i​​ ___ ​L​i​​

 ​   =  r ​ 
​T​i​​ __ ​L​i​​
 ​  +  w.​ 
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manufacturing employment share.44 This estimate corresponds to 31 percent of a 
standard deviation in the change of the manufacturing employment share between 
2000 and 2010 (5.7 percentage points, see Table 2).

In the case of maize, the estimates reported in columns 1 and 2 of Table 9 indi-
cate that areas where potential maize yields increased relatively more experienced 
a smaller increases in the manufacturing employment share. In addition, columns 3 
and 4 show that not only the share of manufacturing employment fell but also its 
absolute level. Finally, columns 5 and 6 show that manufacturing wages increased. 
These estimates are consistent with the empirical predictions of our model: because 
technical change in maize is land-augmenting, it increases labor demand in agri-
culture, generating an increase in wages and a reallocation of labor away from the 
manufacturing sector.

E. Services and Other Sectors

In this section we complement our empirical findings with an analysis of the ser-
vice sector. For this purpose, we reproduce the estimates of the effects of technical 
change on the agricultural and manufacturing employment shares in Table 10, where 
we also include estimates for the service sector.45 The point estimates of the effect 

44 This number is computed multiplying the predicted increase in agricultural labor productivity for 1 stan-
dard deviation in ​Δ​A​ j​ 

soy
​​ by the elasticity of manufacturing employment share to agricultural labor productivity: ​

0.114 × 0.157  =  0.0179​. 
45 The services sector includes: construction, commerce, lodging and restaurants, transport, finance, housing 

services, domestic workers, and other personal services. Other sectors include: public administration, education, 
health, international organizations, extraction, and public utilities. 

Table 9—The Effect of Agricultural Technological Change on Manufacturing 
(Employment Share, Employment, and Wages) 

​Δ​ Employment ​Δ​ log ​Δ​ log
share employment wage

 (1) (2) (3) (4) (5) (6)

​Δ​A​​ soy​​ 0.023 0.021 0.218 0.186 −0.032 −0.024
(0.002) (0.002) (0.018) (0.020) (0.012) (0.012)

​Δ​A​​ maize​​ −0.005 −0.004 −0.057 −0.043 0.018 0.014
(0.001) (0.001) (0.009) (0.009) (0.005) (0.005)

Share rural population −0.006 0.011 −0.186 0.051 0.197 −0.014
(0.004) (0.005) (0.044) (0.056) (0.026) (0.035)

log income per capita 0.002 0.093 −0.107
(0.003) (0.037) (0.026)

log pop. density 0.002 0.020 −0.035
(0.001) (0.008) (0.005)

Literacy rate 0.034 0.197 0.093
(0.010) (0.117) (0.075)

Observations 4,149 4,149 4,149 4,149 4,149 4,149
R2 0.063 0.073 0.056 0.068 0.022 0.045

Notes: Changes in dependent variables are calculated over the years 2000 and 2010. All municipality controls are 
from the population census of 1991. The unit of observation is the municipality. Robust standard errors reported 
in parentheses. 
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of soy technical change on the agriculture and manufacturing employment shares 
have the same size: they are −0.021 and 0.021, respectively, both with a standard 
error of 0.002. At the same time, the estimates of the effects on the service and other 
sectors are very small and not statistically different from zero. This implies that 
local technical change in soy induced a reallocation of labor from agriculture to the 
local manufacturing sector but not toward local services.

To interpret these findings, we turn to the model with nontraded services where 
we identified two effects of labor-saving technical change in agriculture: the supply 
effect and the demand effect. The supply effect is generated by the reduction in 
the marginal product of labor in the agricultural sector, which reduces agricultural 
employment. The demand effect is generated by higher income resulting from agri-
cultural productivity growth which leads to increased consumption of services. As 
a result, the net effect of agricultural technical change on industrialization depends 
on the relative strength of the supply and demand effects. In addition, the demand 
effect is driven by the increase in land rents, thus its strength depends on the extent 
to which landowners consume services in the region where their land is located. 
Then, the model can explain the absence of an effect of local technical change on 
employment in the local service sector if the share of land rents that accrue to land-
lords consuming services in the same municipality where they own land ​(θ)​ is small. 
We use information from the agricultural census about the presence of small family 
farms in each municipality to show that this is the case. Family farms covered only  
15 percent of cultivated area of farms whose main activity is soy production in 
2006.46 These data can be used as a proxy for ​θ​ under the assumption that landlords 
owning large estates are less likely to reside locally or consume local services. We 
thus use this information to study whether the effect of soy technical change on the 
employment share of services was larger in areas with a higher presence of small 
family farms. We report the results from this analysis in Tables A2 and A3 in the 
online Appendix. First, we find that in areas characterized by a large presence of 
family farms, the expansion of the soy area is associated with increases in income 
per capita and the employment share of services.47 Second, we implement our iden-
tification strategy that uses potential soy yields as a measure of technical change. We 
find that municipalities with a higher increase in potential soy yields experienced a 
larger increase in income per capita. Consistently with the simple correlations in the 
data, this increase in income per capita was larger in municipalities characterized 
by a higher presence of family farms. However, it did not lead to an increase in the 
services employment share.

46 Brazilian law 11.326 defines family farms as those satisfying all the following conditions: area below four 
fiscal units; substantial amount of labor force provided by the family; agricultural production as main source of 
family income; farm management by the family itself. They represented 76 percent of farms whose main activity 
is soy production but covered only 15 percent of their area. In the case of maize, they represent 88 percent of farms 
whose main activity is maize production and 55 percent of cultivated area. 

47 These results are shown in columns 3 and 4 of Table A2 in the online Appendix. In particular, the size of 
the estimates reported in column 3 implies that an expansion in soy area is positively correlated with an increase 
in income per capita only in municipalities where family farms represent more than 54 percent of soy-producing 
farms. This condition is satisfied in 48 percent of soy-producing municipalities. Similarly, the size of the estimates 
reported in column 4 implies that an expansion in soy area is positively correlated with an increase in services 
employment share only in municipalities where family farms are more than 78 percent of soy-producing farms. This 
condition is satisfied only in 26 percent of soy-producing municipalities. 
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Taken together, our empirical findings indicate that local technical change does 
not significantly affect local employment in services in the average Brazilian munic-
ipality. Note, however, that these findings do not imply that agricultural technical 
change did not have an effect on the demand for services in the aggregate economy. 
To clarify this point, we extend the model to analyze the simple case where the resi-
dence distribution of landowners across the country is identical to that of workers.48 
In this case the effect of local technical change on the local demand for services is 
small because the consumption of local absentee landowners is spread across all 
municipalities in proportion to their workers population. However, if several regions 
experience technical change at the same time, the aggregate demand effect of tech-
nical change might be large. Still, the difference-in-differences empirical strategy 
can not identify it because the effect has the same value for all municipalities. Thus, 
a further investigation of the effect of agricultural technical change on the aggregate 
demand for services is left for future work.

F. Variable Factor Endowments

The model presented in Section II describes a small open economy where goods 
can be freely traded but factor endowments are fixed. Our empirical strategy thus 
relies on the assumption that each unit of observation behaves as a small open 

48 See Section A.3.5 in the online Appendix for detailed derivations. This case is also equivalent to one where all 
land income is taxed away and redistributed lump-sum to workers. This case is relevant for Brazil because income 
taxes are collected by the federal government and partly redistributed across municipalities based on population. 

Table 10—The Effect of Agricultural Technological Change  
on Employment Shares

​Δ​ Employment share

Agriculture Manufacturing Services Other sectors
(1) (2) (3) (4)

​Δ​A​​ soy​​ −0.021 0.021 −0.002 0.001
(0.002) (0.002) (0.002) (0.001)

​Δ​A​​ maize​​ 0.006 −0.004 −0.000 −0.001
(0.001) (0.001) (0.001) (0.001)

Share rural population −0.076 0.011 0.043 0.023
(0.007) (0.005) (0.005) (0.004)

log income per capita 0.014 0.002 −0.015 −0.001
(0.004) (0.003) (0.003) (0.002)

log pop. density −0.000 0.002 0.000 −0.002
(0.001) (0.001) (0.001) (0.001)

Literacy rate −0.012 0.034 −0.009 −0.013
(0.014) (0.010) (0.010) (0.007)

Observations 4,149 4,149 4,149 4,149
R2 0.073 0.073 0.103 0.045

Notes: Changes in dependent variables are calculated over the years 2000 and 2010. All munic-
ipality controls are from the population census of 1991. Services include: construction, com-
merce, lodging and restaurants, transport, finance, housing services, domestic workers, and 
other personal services. Other sectors include: public administration, education, health, inter-
national organizations, extraction, and public utilities. The unit of observation is the munici-
pality. Robust standard errors reported in parentheses.
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economy: goods can be traded across municipalities but labor markets are local and 
there is a fixed supply of land. However, the period under study is characterized by 
significant internal migration flows: 16 percent of the population between 16 and 
55 years old had moved to their 2010 municipality of residence during the previous 
10 years. In addition, Brazil has vast areas of underutilized land, which were in part 
converted to agricultural activities during the period under study. Between 1996 
and 2006 the land used for cultivation or cattle ranching increased by 7 percent 
to 154 million hectares in the regions of the North, North-East, and Center-West. 
Thus, in this section, we investigate the role of migration and the expansion in the 
agricultural frontier.

Labor.—We first investigate the impact of agricultural technical change on migra-
tion flows. The model predicts that municipalities more affected by labor-saving 
technical change (GE soy) experience a larger contraction in labor demand in the 
agricultural sector. Because labor is assumed to be immobile across municipalities, 
all the adjustment to technological change occurs through a reallocation of labor 
toward the manufacturing sector. However, if workers could relocate to other munic-
ipalities, some of this adjustment would occur through out-migration. To test this 
prediction, we construct net migration rates for every municipality between 2000 
and 2010 using data from the population census.49 Next, we estimate the baseline 
specification described by equation (12) using the net migration rate in each munic-
ipality as dependent variable. Estimation results are presented in the first column of 
Table 11. The estimated coefficient on the change in soy potential yields is negative 
and statistically significant, indicating that municipalities with larger increases in 
potential soy yields experienced a net outflow of migrants between 2000 and 2010. 
These estimates can be used to assess the relative importance of the two adjust-
ment mechanisms mentioned above: labor reallocation toward other sectors and 
out-migration. For this purpose, we can first compute the elasticity of migration 
flows to changes in agricultural labor productivity due to GE soy adoption: a 1 per-
cent increase in agricultural labor productivity corresponds to a 0.094 percentage 
points decrease in the migration rate.50 This amounts to roughly one-third (0.37) of 
the reduction in the employment share of the agricultural sector.51 Finally, the esti-
mated coefficient on the change in maize potential yields is positive and significant, 
indicating that municipalities with higher increase in potential maize yield experi-
enced a net inflow of migrants in the same period, as expected.

49 Net migration rates are defined as the number of net migrants in a municipality divided by its population. A 
detailed explanation of how net migration rates are constructed is contained in the online Appendix. 

50 We compute this elasticity as in Section IVC: we divide the estimated coefficient on ​Δ​A​ j​ 
soy

​​ when the outcome 
is the migration rate by the estimated coefficient on ​Δ​A​ j​ 

soy
​​ when the outcome is agricultural labor productivity. 

When we estimate the specification including controls for municipality characteristics, this ratio is equal to ​
−0.013/0.134  =  −0.094​. 

51 To compare the migration rate estimates with the reduction in the employment share of agriculture we need 
to take into account that the migration rate is computed relative to the overall population aged 16 to 55 years old in 
2000, while employment shares are computed relative to workers only. Thus, we multiply the elasticity of migration 
rate to changes in agricultural labor productivity for the overall population aged 16 to 55 years old in 2000 (−0.094) 
by the share of active population in the age group 16–55 in 2000 (0.71) and the employment rate for that same age 
group (0.85). This adjusted elasticity is equal to −0.057. Then, we divide this number by the estimated elasticity 
of agricultural employment share to changes in agricultural labor productivity (−0.155), obtaining a ratio of 0.37. 
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The findings discussed above suggest that the presence of migration flows across 
municipalities dampens the effects of technical change on sectoral employment 
shares, as part of the adjustment occurs through migration flows. In particular, in our 
model, we can think of out-migration induced by labor-saving technical change as a 
reduction in the labor endowment, which would result in a reduction in the manufac-
turing employment share. This is because equilibrium agricultural employment is 
unaffected by a change in the labor endowment (see equation (4)). In turn, the equi-
librium level of employment in manufacturing is determined by the labor market 
clearing condition, ​​L  ​m​​  =  L − ​L ​ a​ ∗​.​ Thus, the manufacturing employment share must 
fall when the labor endowment falls. As a result, the presence of migration damp-
ens the positive effects of soy technical change on the manufacturing employment 
share. A similar argument implies that the in-migration induced by land-augmenting 
technical change in maize would increase the manufacturing employment share and 
dampen the effects of maize technical change.

Land.—Next, we study the role of the expansion in the agricultural frontier. 
During this period the frontier expanded not only over the Amazon rainforest but 
also in the Cerrado. This is a tropical savanna ecoregion in central Brazil where soils 
used to be too acidic and nutrient poor. Starting from the 1980s these soils were 
treated by the Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), which 
enabled agricultural activities to expand over these areas. The incorporation of for-
est or fallow land into agricultural activities can potentially affect our estimates of 
the effects of technical change. In the model, an expansion in the land endowment 
would have the same effects as land-augmenting technical change. Thus, differential 

Table 11—Variable Factor Endowment

​Δ​ Agriculture ​Δ​ Manufacturing
Migration rate employment share employment share

 All Nonfrontier Frontier Nonfrontier Frontier Nonfrontier Frontier
(1) (2) (3) (4) (5) (6) (7)

​Δ​A​​ soy​​ −0.013 −0.015 −0.012 −0.023 −0.020 0.023 0.019
(0.004) (0.005) (0.006) (0.003) (0.004) (0.002) (0.004)

​Δ​A​​ maize​​ 0.006 0.007 0.003 0.008 0.003 −0.005 −0.003
(0.002) (0.002) (0.003) (0.001) (0.002) (0.001) (0.002)

Share rural pop. −0.078 −0.095 −0.035 −0.081 −0.061 0.019 −0.004
(0.011) (0.014) (0.020) (0.008) (0.012) (0.006) (0.009)

log income 0.051 0.050 0.047 0.017 0.008 0.006 −0.003
  per capita (0.008) (0.009) (0.013) (0.005) (0.007) (0.004) (0.005)
log pop. density −0.006 −0.002 −0.009 −0.001 0.001 0.001 0.001

(0.002) (0.003) (0.003) (0.001) (0.002) (0.001) (0.001)
Literacy rate 0.009 0.018 0.079 −0.026 0.032 0.018 0.038

(0.023) (0.027) (0.038) (0.017) (0.024) (0.012) (0.016)

Observations 4,149 2,617 1,532 2,617 1,532 2,617 1,532
R2 0.104 0.119 0.113 0.080 0.076 0.076 0.066

Notes: Changes in dependent variables are calculated over the years 2000 and 2010. All municipality controls are 
from the population census of 1991. Municipalities that are part of the agricultural frontier are those that, between 
1996 and 2006, experienced an increase in agricultural land used for the cultivation of permanent crops, seasonal 
crops, and cattle ranching. Municipalities that are part of the agricultural nonfrontier are those that experienced 
no increase, or a negative change, in used agricultural land between 1996 and 2006. The unit of observation is the 
municipality. Robust standard errors reported in parentheses. 
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increases in the land endowment across regions could account for our finding that 
areas more affected by technical change in maize experienced an increase in the 
agricultural employment share or attenuate our findings for the effects of soy tech-
nical change.

To assess the extent to which our estimates are affected by expansions in the agri-
cultural frontier we test the predictions of the model in a subsample of municipalities 
where the land endowment did not increase. In particular, we define frontier munici-
palities as those which experienced an increase in land use for agricultural activities 
between 1996 and 2006 and split the sample of municipalities in two groups: frontier 
and non-frontier (see map in Figure A7 in the online Appendix). Next, we estimate 
our baseline specification described by equation (12) separately for each subsample. 
Our estimates of the effect of soy technical change on the agricultural and manufac-
turing employment shares in the subsample of non-frontier (frontier) municipalities 
are only slightly larger (smaller) in absolute value than estimates using the full sam-
ple, as shown in columns 4–7 of Table 11. This finding suggests that the expansion 
of the agricultural frontier does not significantly mitigate our baseline estimates. In 
the case of maize, estimates of the effect of technical change on the agricultural and 
manufacturing employment shares in the subsample of non-frontier municipalities 
are slightly larger in absolute value than estimates using the full sample. In contrast, 
estimates are smaller and not statistically significant in the frontier. These findings 
suggest that introducing a second harvesting season for maize only had significant 
effects on labor demand in non-frontier municipalities.

Finally, we study whether migration patterns differ in frontier and non-frontier 
municipalities. Columns 2 and 3 of Table 11 show that the effect of soy technical 
change on migration is similar for both samples. In contrast, the positive effect of 
maize technical change on migration is concentrated in non-frontier municipalities.

V.  Robustness Checks

A. Additional Controls

A potential concern regarding our estimates is that municipalities that benefit the 
most from technical change in soy also have higher overall agricultural productivity. 
Thus, our estimates could be capturing differential structural transformation trends 
across municipalities that differ in their initial level of agricultural development. 
To address this concern, we report estimates of equation (12) including controls 
for three different measures of agricultural development: productivity, wages, and 
employment share.

Coefficient estimates are reported in Tables A4 and A5 of the online Appendix. 
The estimated effects of soy technical change on agricultural and manufacturing out-
comes are robust to the inclusion of these controls. First, note that the sign of esti-
mated coefficients remains the same and estimates remain significant at 1 percent. In 
terms of their absolute value, estimated coefficients are stable for the expansion of 
soy area, output per worker, labor intensity, and manufacturing wages. Estimates for 
the agricultural and manufacturing employment shares decrease 25 and 40 percent, 
respectively, when we include the control for agricultural labor productivity. The 
reason why estimates are affected by the inclusion of this control is that, to some 
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extent, places with higher initial soy yields benefited more from the new technology. 
As a result, the control for lagged overall agricultural productivity captures part of the 
variation we are interested in. Thus, we interpret our estimates of the effects of soy 
technical change conditional on the initial level of agricultural productivity as indic-
ative that at least 60 percent of our estimated effects of technical change on sectoral 
employment shares are not driven by differential structural transformation trends 
across municipalities that differ in the initial level of agricultural productivity.52

We obtain similar findings in the case of maize. Estimated coefficients are robust 
to including these additional controls. Estimates of the effect of maize technical 
change on agricultural labor intensity and manufacturing wages are stable and sig-
nificant at 1 percent. In the case of the agricultural and manufacturing employment 
shares, estimates fall by 25 and 40 percent, respectively, when we control for lagged 
labor productivity in agriculture.

B. Preexisting Trends

In this section we show that our results are robust to controlling for preexisting 
trends. This exercise addresses the following concern: if municipalities that are bet-
ter suited for adopting GE soy were already experiencing faster structural transfor-
mation before the legalization of this technology in Brazil, our exogenous measure 
of technical change would capture a long-term trend instead of the effect of GE soy 
adoption.

In order to test for the existence of preexisting trends, we use data from the popu-
lation censuses of 1980, 1991, 2000, and 2010. We thus estimate a model similar to 
the one presented in our baseline equation (12), but with an additional time period, 
as follows:

(13)  ​  Δ​y​ jt​​  = ​ δ​t​​ + ​β​ 0​ 
soy​ Δ​A​ j​ 

soy​ + ​β​ 1​ 
soy​ Δ​A​ j​ 

soy​ Afte​r​ t​​ + ​β​ 0​ maize​ Δ​A​ j​ maize​

	 + ​β​ 1​ maize​ Δ​A​ j​ maize​ Afte​r​ t​​ + ​X​ jt−1​ ′  ​ ω + Δ​ε​jt​​​ ,

where the outcome of interest, ​Δ​y​ jt​​​ is the decadal change in outcome variables 
between the start of a period (year ​t − 1​) and the end (year ​t​). Each period spans 
a decade: 1991 to 2000 and 2000 to 2010. ​​δ​t​​​ are time dummies for each decade 
and ​Afte​r​ t​​​ is a dummy equal to 1 if ​t  =  2010.​ Thus, ​​β​ 0​ 

soy​​ captures the effect of 
soy technical change that is common in the period before (1991–2000) and after 
(2000–2010) the adoption of GE soy seeds. In contrast, ​​β​ 1​ 

soy​​ captures the differen-
tial effect of soy technical change after the introduction of GE soy seeds. Similarly, 
the coefficient ​​β​ 1​ maize​​ captures the differential effect of maize technical change in 
the period 2000–2010. Finally, ​​X​jt−1​​​ is a vector containing a set of ten-year-lagged 

52 Note that all coefficient estimates are stable when we only include the control for the lagged agricultural 
employment share, except for the estimated effect of technical change on employment shares themselves which 
tend to fall. Still, the estimated effect of technical change on the manufacturing employment share only falls from 
0.021 to 0.014 and remains statistically significant at 1 percent. These results imply that our estimated coefficients 
are not capturing delayed responses to the trade liberalization that occurred at the beginning of the previous decade 
in areas with different initial agricultural specialization, studied by Dix-Carneiro and Kovak (2014). 
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municipality characteristics including the share of rural population, average income 
per capita, population density, and literacy rate.53

Results for manufacturing employment are reported in column 1 of Table A6 of 
the online Appendix. Our estimate of ​​β​ 0​ 

soy​​ , which captures the effect of soy technical 
change that is common in the period before 1991–2000 and after 2000–2010 the 
adoption of GE soy seeds, is very small and not statistically different from zero. 
This finding indicates that there are no pretrends in manufacturing employment. In 
addition, our estimate of ​​β​ 1​ 

soy​​ , which estimates the differential effect of soy techni-
cal change on manufacturing employment after the introduction of GE soy seeds, is 
positive and precisely estimated. Similarly, in the case of maize, we do not find pre-
existing trends in manufacturing employment. Note that we perform this test for the 
level of manufacturing employment but not for the manufacturing and agricultural 
employment shares. This is because there were important changes in the definition 
of employment after the 1991 census, thus employment shares can not be measured 
in a consistent way across the 1991 and 2000 censuses.54

Column 2 of Table A6 shows the results of estimating equation (13) when the 
outcome variable is the average wage in manufacturing. In this case, ​Δ​A​​ soy​​ had an 
opposite effect on manufacturing wages between 1991 and 2000 with respect to the 
2000–2010 period. Therefore, the existence of these preexisting trends in manufac-
turing wages attenuates our baseline estimated effects of soy and maize technical 
change on wages in the period 2000–2010, presented in Table 9.

Finally, we check for preexisting trends in migration. A potential concern is that 
areas that are better suited for adopting GE soy experienced a pattern of migration 
prior to the legalization of GE soy that affected farmers’ incentive to adopt this 
new technology. For example, if these areas experienced large out-migration in the 
decade before GE soy was legalized, farmers would have a higher incentive to adopt 
a labor-saving technology to cope with labor scarcity. Column 3 of Table A6 shows 
the results of estimating equation (13) when the outcome variable is net migration 
rate. The coefficient on ​Δ​A​​ soy​​ shows that there are no differential preexisting trends 
in migration for areas that have a higher increase in potential soy yields. Similarly, 
in the case of maize, we do not find preexisting trends in migration.55

53 The municipality characteristics correspond to the year 1991 when the outcome variables are observed in 
changes between 2000 and 2010, and to year 1980 when the outcome variables are observed in changes between 
1991 and 2000. 

54 Between the 1991 and 2000 population censuses IBGE changed its definition of employment in two import-
ant ways. First, it started to count zero-income workers as employed. In order to homogenize the Brazilian census 
with international practices, the IBGE started to consider employed anyone who helped another household member 
with no formal compensation, as well as agricultural workers who produced only for their own consumption (IBGE 
2003, p. 218). Zero-income workers are more common in agriculture than in other sectors, and in 1991 were only 
partially included in the labor force. In the 1991 census 15 percent of agricultural workers reported zero income, 
against 34 percent in 2000 and 35 percent in 2010. Second, the IBGE changed the reference period for considering 
a person employed: while in 1991 such period included the last 12 months, in 2000 it only included the reference 
week of the census. This new rule implied that workers performing temporary and seasonal activities who were 
not employed during the reference week were counted in the 1991 census but not in the 2000 census. This second 
change is likely to be especially problematic for the agricultural sector, considering that the reference week in the 
2000 census was in the middle of the Brazilian winter. This is why, to test for preexisting trends, we focus on the 
absolute number of workers employed in manufacturing as an outcome (instead of its share in total employment). 
This measure is less likely to be affected by the changes introduced between the two censuses because: there are 
very few zero-income workers in manufacturing (0.5 percent, 1.9 percent, and 1 percent of manufacturing workers 
declare zero income in 1991, 2000, and 2010, respectively); and manufacturing is less seasonal than other activities. 

55 These results suggest that the migration flows generated by the expansion of the Brazilian road network in 
the years 1960–2000 that are studied by Morten and Oliveira (2014) are unlikely to be confounding our results. 
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These tests validate our interpretation that our estimates of the effects of agri-
cultural technical change on structural transformation are due to the introduction 
of new agricultural technologies rather than to preexisting trends in areas that were 
more affected by these new technologies.

C. Larger Unit of Observation: Microregions

In the empirical analysis performed so far we assumed that municipalities are 
a good approximation of the relevant labor market faced by Brazilian agricultural 
workers. A potential issue is that local labor market boundaries do not overlap with 
a municipality’s administrative boundaries. In particular, some municipalities might 
be too small to properly capture labor flows between urban and rural areas, especially 
if manufacturing activities take place in the former, and agricultural activities in the 
latter. In order to take into account this concern we aggregate our data at a larger unit 
of observation: microregions. These regions are groups of territorially contiguous 
municipalities created, for statistical purposes, by the Brazilian Statistical Institute 
(IBGE). Table A7 reports the results of estimating equation (12) using microregions 
as a unit of observation. The outcome variables are the same as in Table 9: change in 
manufacturing employment share, change in manufacturing employment (in logs), 
and change in average manufacturing wage (in logs). The estimates are consistent 
and similar in magnitude to those reported in Table 9, both for soy and maize.

D. Input-Output Linkages

Our theoretical model predicts that agricultural technical change can have an 
effect on manufacturing employment through labor market forces only. In the case 
of soy, for example, the adoption of new agricultural technologies releases agri-
cultural workers that find employment in the manufacturing sector. In this section 
we investigate to which extent our findings reflect the strength of another channel 
through which agricultural technical change can affect manufacturing employment: 
input-output linkages. Soy and maize farming require inputs produced by other 
sectors, including manufacturing. Therefore, for example, an expansion of the area 
farmed with soy in a given municipality might drive an increase in manufacturing 
employment in industries that produce inputs used in soy production, such as chem-
icals or fertilizers. To the extent that manufacturing firms producing chemicals and 
fertilizers used in agriculture face high transport costs, there might be an incentive 
for them to locate in the same municipality in which agricultural production takes 
place. Therefore, the effect of agricultural technical change on manufacturing that 
we show in Table 9 could be explained by an increase in the agricultural demand 
for manufacturing inputs. A similar argument applies for manufacturing industries 
that use soy and maize as intermediate inputs, such as the food processing industry. 
In order to assess the contribution of these direct linkages on our estimates, we 
construct a measure of manufacturing employment that excludes the sectors directly 
linked to soy and maize production through input-output chains.

In order to identify input-output linkages in the data, we proceed as follows. We 
use the 2005 Brazilian input-output matrix (IBGE 2008) to identify manufactur-
ing sectors that are providing inputs, or receiving outputs, from the soy and maize 
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sectors. On the input side, soy and maize are used as intermediate goods in only 
one manufacturing sector: the food and beverage sector, which in 2005 purchased 
around one-half of the total Brazilian production of both crops. On the output side 
the matrix is less detailed, thus we use information on goods purchased by agricul-
tural and breeding farms in general. One-half of the inputs purchased by these farms 
are supplied by manufacturing sectors and four commodities account for 84 percent 
of the total value of inputs purchased: inorganic chemicals, fertilizers, diesel oil, and 
maize oil. These commodities are produced by the chemical industry, the oil refining 
industry, and the food and beverage industry. We use this information to construct 
measures of employment and wages in manufacturing that exclude those industries 
which are providing inputs, or receiving outputs, from the soy and maize sectors.

Table A8 reports estimates of our baseline specification described by equa-
tion (12) using as outcome variables measures of manufacturing employment and 
wages that exclude workers employed in sectors directly linked to soy and maize. 
Estimates of the effect of soy technical change on the manufacturing employment 
share and level are positive, precisely estimated and 38 to 10 percent smaller than our 
baseline estimates displayed in Table 9.56 In turn, the effect of technical change in 
soy on manufacturing wages decreases substantially, and is not precisely estimated. 
In the case of maize, estimated coefficients are essentially unaffected by excluding 
workers in downstream and upstream manufacturing sectors when the outcomes are 
manufacturing employment share and level. As in the case of soy, the effect on man-
ufacturing wages decreases in size and is not precisely estimated. Taken together, 
the results presented in this section imply that at least 62 percent of our estimated 
effect of agricultural technical change on the manufacturing employment share is 
not driven by the processing of soy and maize in downstream industries nor larger 
agricultural sector demand for manufacturing inputs. A more detailed analysis is 
needed to separate the role of labor market and input-output forces in the remaining 
38 percent of the total estimated effect, which is an interesting avenue for further 
work.

E. Commodity Prices

In this section we show that our results are robust to controlling for international 
commodity prices. To the extent that variation in international prices of soy and 
maize affect agricultural outcomes in all Brazilian municipalities proportionally, 
their effects are captured by the time fixed effects in equation (9). However, price 
changes might have heterogeneous effects across municipalities with different suit-
ability to the cultivation of soy and maize. For example, an increase in the interna-
tional price of soy could induce farmers to expand the area devoted to soy relatively 
more in municipalities that are initially more suitable for its cultivation.

Figures A8 and A9 display the evolution of international prices of soy and maize, 
expressed in 2000 US$. These figures show how the international prices of both 

56 In our specification with all initial municipality controls, the point estimate on ​Δ​A​​ soy​​ when the outcome is 
manufacturing employment share goes from 0.021 to 0.013. We can reject the null hypothesis that these two coeffi-
cients are equal. When the outcome is manufacturing employment instead, the point estimate on ​Δ​A​​ soy​​ goes from 
0.186 to 0.167. In this case, the two coefficients are not statistically different. 



1360 THE AMERICAN ECONOMIC REVIEW JUNE 2016

commodities have been in an upward trend starting from year 2007. This pattern 
is unlikely to affect our estimates when we use data from the last two agricultural 
censuses, 1996 and 2006. In particular, note that the international price for both soy 
and maize was lower in 2006 than in 1996. However, when we use data from the 
last two population censuses, which took place in 2000 and 2010, the end of period 
year is characterized by high international soy and maize prices with respect to the 
initial year. To address this concern, we assess the robustness of our findings for the 
manufacturing sector to controlling for changes in commodity prices.

The data from the population censuses do not allow us to control for yearly vari-
ation in soy and maize prices. We therefore rely on an alternative source of data 
for manufacturing outcomes: the annual manufacturing survey (PIA). The annual 
manufacturing survey is carried out yearly, allowing us to both exclude years of 
high international commodity prices and fully control for price variation. It covers 
the universe of manufacturing firms with at least 30 employees in Brazil, and it is 
therefore representative at municipality level for this class of firms. We focus on two 
variables from this survey: manufacturing employment and average wages.57 We 
estimate an equation of the following form:

(14) ​ ​y​ jt​​  = ​ δ​j​​ + ​δ​t​​ + ​β​​ soy​​A​ jt​ 
soy​ + ​β​​ maize​ ​A​ jt​ maize​ + ​∑ 

z
​ 
 
  ​​ ​λ​​ z​ ​P​ t​ z​ ​A​ j  0​ z ​ + t ​X​ j, 1991​ ′ ​  ω + ​ε​jt​​​ ,

where ​​y​ jt​​​ is total employment or average wage in a given municipality; ​​A​ jt​ 
soy​​ is equal 

to the potential soy yield under low inputs for all years before 2003 and to the 
potential soy yield under high inputs starting from 2003 (same criteria is used to 
define ​​A​ jt​ maize​​). We control for the prices of soy and maize by multiplying the poten-
tial yield under low inputs of each crop by the time varying international price of 
each crop. Finally, we control for differential trends across municipalities with dif-
ferent initial levels of development by adding an interaction of the vector of initial 
municipality characteristics ​(​X​j, 1991​​)​ and a time trend (​t​). In all specifications we 
control for both municipality and year fixed effects (​​δ​j​​​ and ​​δ​t​​​) and cluster standard 
errors at the municipality level to address potential serial correlation in the error 
term.

The results obtained using data from the annual manufacturing survey are con-
sistent with those obtained using the population census (see Table A9 in the online 
Appendix): areas with higher increase in potential soy yield experienced a larger 
increase in manufacturing employment and a larger decrease in average manufac-
turing wages. The effect on wages is less precisely estimated than in Table 9, and it 
loses statistical significance when we add all controls. Importantly, when we control 
for differential effects of international prices in columns 2 and 5, our point estimates 
do not change. In terms of magnitude, the point estimates we obtain with this speci-
fication for the coefficients on both ​Δ​A​​ soy​​ and ​Δ​A​​ maize​​ are similar to those obtained 
with the same outcomes using the population census data.

57 The average wage is defined as the aggregate wage bill (in real terms) divided by the total number of workers 
employed in a municipality. 
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F. Spatial Correlation

The maps we present in Figures A3 to A6 suggest that the potential yields of soy 
and maize are correlated across space. Therefore, in this section we show that the 
estimates of the effect of agricultural technical change reported in Tables 8, 9, and 
10 remain statistically significant when we correct standard errors to account for 
spatial correlation. First, we allow the residuals to be correlated within geographi-
cal areas larger than a single municipality. For this purpose, we compute standard 
errors clustered at two larger levels of aggregation: microregions and mesore-
gions.58 Second, we calculate standard errors that correct for spatial dependence 
as suggested by Conley (1999). This procedure allows the correlation of residuals 
across municipalities to be a decaying function of distance until a fixed threshold, 
as explained below.

Tables A10, A11, and A12 in the online Appendix report our results. The first row 
below the coefficients reports baseline robust standard errors for comparison. The 
following two rows report standard errors clustered at micro- and mesoregion lev-
els. Finally, the last three rows report the Conley standard errors calculated assum-
ing errors are correlated within 50, 100, and 200 km. We report the significance 
level alongside each of these estimated standard errors. In the case of soy technical 
change, the tables show that although standard errors tend to increase after account-
ing for spatial correlation, most coefficient estimates remain statistically significant 
at 1 percent. In the case of maize, all estimates remain statistically significant except 
for the manufacturing employment share when clustering at the mesoregion level or 
considering the largest distance cutoff of 200 km.

G. Alternative Definition of Technical Change

In this section we discuss in more detail the measure of technical change obtained 
from the FAO-GAEZ dataset. We use the change in potential soy yields when 
switching from the low to the high technology as a source of exogenous variation 
in agricultural productivity. In particular, we use it as an instrument for agricultural 
labor productivity which permits to obtain the elasticity of sectoral employment 
shares to changes in labor productivity induced by technical change in soy. Ideally, 
we would like the measure of change in potential yields to capture only the effect 
of adopting GE soy, and not other changes in the production technology of soy. 
Our measure of technical change deviates from this ideal because the FAO-GAEZ 
dataset characterizes agricultural technologies as bundles of inputs, including seed 
quality, level of mechanization, and use of chemicals. Because all of these inputs 
change when switching from the low to the high technology, a potential concern is 
that our measure of technical change might capture other changes in the produc-
tion technology of soy. We address this concern in two ways. First, in Table 6 we 
show that our measure of technical change in soy predicts the expansion in the area 
planted with GE soy but not the expansion in the area planted with non-GE soy. 
Second, we test the robustness of our results to an alternative definition of technical 

58 Both microregions and mesoregions are statistical divisions of Brazil proposed by the IBGE to facilitate the 
collection of data. There are 558 microregions and 137 mesoregions. 
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change that uses potential yields under an intermediate technology to capture the 
level of agricultural technology before the introduction of GE seeds. We discuss the 
results obtained below.

The FAO-GAEZ dataset characterizes the intermediate technology as using 
improved varieties of seeds, partial mechanization, and some use of chemicals. 
This technological level lies somewhere in between traditional and technolog-
ically advanced farming. We estimate equation (12) for the set of agricultural 
and manufacturing outcomes of interest, using the differences in potential yields 
in soy and maize between the high and the intermediate level of technological 
inputs to measure ​Δ​A​ j​ 

soy​​ and ​Δ​A​ j​ maize​.​ Table A13 presents the resulting estimates. 
A comparison with Tables 8, 9, and 10 shows that our main results are robust 
to this alternative definition of technical change in agriculture in the sense that 
point estimates and standard errors have a similar size. We can use the estimated 
coefficients under this alternative specification to compute the elasticity of agri-
cultural and manufacturing employment shares to changes in agricultural labor 
productivity due to GE soy adoption in the same way as we do in Sections IVC 
and IVD. The elasticities obtained are 26 percent smaller in the case of the agri-
cultural employment share and 45 percent smaller in the case of the manufacturing 
employment share.59

In sum, our estimates of the effect of soy technical change on employment 
shares are smaller when we use the intermediate technology as a description of the 
situation before GE soy was adopted. Still, we prefer to use the difference between 
high and low level of inputs in our baseline specification for two reasons. First, it is 
a more precise measure of technical change in agriculture. This is because the high 
and low level of technical inputs are clearly defined, while intermediate inputs has 
a loose definition that could span different levels of agricultural technology. As a 
result, this measure might miss part of the variation that we are trying to capture. 
For example, improved seed varieties and herbicides which are described as part 
of the bundle of intermediate inputs can capture part of the effect of adopting GE 
seeds. Second, the main potential concern with using the difference between the 
high and the low technology as a measure of technical change is that it might cap-
ture changes in technology other than the adoption of GE soy, like mechanization. 
However, the finding that this measure of technical change is not positively cor-
related with the expansion of non-GE soy suggests that this concern is not import-
ant in practice.

VI.  Final Remarks

This paper provides direct empirical evidence on the effects of agricultural pro-
ductivity on structural transformation. We isolate these effects by studying the 
introduction of genetically engineered soy in Brazil. This technology allows farm-
ers to employ fewer workers per unit of land to yield the same output, increasing 
labor productivity in agriculture. After its legalization in 2003, genetically engi-
neered soy experienced a rapid and widespread adoption in Brazil. We exploit the 

59 The elasticity of the agricultural employment share to agricultural labor productivity is −0.115. As for manu-
facturing, we obtain an elasticity of employment share to agricultural labor productivity of 0.086. 
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differential impact of this new technology on potential yields across geographi-
cal areas to estimate the causal effect of agricultural technical change on sectoral 
employment shares.

Our findings contribute to the debate on the effects of agricultural productivity on 
industrialization in open economies. We argue that these effects depend crucially on 
the factor-bias of technical change. We provide evidence that when technical change 
in agriculture is strongly labor-saving, as in the case of genetically engineered soy, it 
can foster industrialization. When, instead, technical change is land-augmenting, as 
in the case of the introduction of a second harvesting season in maize, agricultural 
productivity growth can retard industrialization.
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